# Complex (to me) sorting / ranking problem

This is a discussion on Complex (to me) sorting / ranking problem within the Excel Questions forums, part of the Question Forums category; Hello - I suffer from ADHD and even with medication, I have a hard time thinking through complex problems like ...

1. ## Complex (to me) sorting / ranking problem

Hello - I suffer from ADHD and even with medication, I have a hard time thinking through complex problems like this. I'm hoping this is easier for someone than it has been for me. Thank you in advance for your assistance!

I would like to sort a list of items automatically and continuously. Each item and its associated information is listed in a row. We are taking a cumulative rank of these two columns and then further ranking by proximity to due date. If past due date, then ranking should be higher than those with due dates in the future. The spreadsheet should automatically sort / rank based on today's date.

The items themselves have the following criteria (each in a separate cell column): Name (irrelevant), A Value to which this formula / macro would assign a ranking of 1-4 (column uses actual words - Highest = 1, High = 2, Medium = 3, Low = 4), Values 1-5 (Also using names, same as previous), Today's Date, Due Date.

So each row would contain columns which look like this:

Name | Highest | Driver | 3/20/12 | 3/25/12 | RANK?
Name | Low | Milk | 3/19/12 | 3/18/12 | RANK?
Name | High | Blah | 3/20/12 | 6/03/12 | RANK?

I need the fifth column (In example above, "Rank?") to return a ranking for each row (1-3 in this example, but for every row in my spreadsheet) by taking the the rank of column 2 (1= Highest, 4= Lowest) plus column 3 (so that a rank of 1 in first column and 1 in second column produces the highest ranking), then the difference (number of actual days) between columns 4 and 5 as the third factor in the rank (so that days past due date is highest with lowest number of days to due date following.)

Please let me know what needs further clarification. Thanks again.

2. ## Re: Complex (to me) sorting / ranking problem

Hi,

I need the fifth column (In example above, "Rank?") to return a ranking for each row
that could be done with a simple formula.

I need the fifth column ... to return a ranking for each row ... by taking the the rank of column 2 ... plus column 3
Column 3 is "Driver,Milk and Blah" in your example, please clarify how is this correlated to the rank.

Kindly as well clarify how the date's difference act for the ranking.

Cheers!.

3. ## Re: Complex (to me) sorting / ranking problem

Hi Cyril,

Here is the actual form[IMG]http://www.mrexcel.com/forum/ mUATWljcm9zb2Z0IE9mZmljZX/tNXEAAHoLSURBVHja7Z0FWJXJ18BZ3V1117VbUgUs7BYFA1ERFbG7FbsDu7u7u7u7EzFokA4pEUS6f997A7iXcF3i2+v+73meeZT7xsx7Zuac37TK9dsPyNN w6z7nLl3n7MVrXBP+n+fv/x8J5y/f4MqNu0pd5DBcuHKTy9dvK3WRw3Dx6i1xUOoib8Pl63eEsnlDqYs8Dldv3hVs5nWlLnIQRH76nOCvz8n4bJX4+ATyMnz9Go6GhiYlSpTEz+8Tef3+/5XQvHlz7ty9q9RFDoOZmRnbtm9X6iKHYdq06UycOFGpizwO+/btw6RLF6Uu8jg8e/aMRo0aK3WRgxAUHEz58uUpX6GC+P+i31TIY4mJiaFYsWKoqKgQHBSEUnImtWrV4q4ABkrJmXTo0IHNmzcrFZFDGT9+PKNGjVIqIo9l9+7dGBoaKBWRx/Li+XN0dHSUisiBfP0axm+//cbvv/8u/r9I8hwMoqKiKF26NAULFiQwMFCp9RxK3bp1lWCQC+nUqRNbtmxRKiKHIuotGDNmjFIReSx79uyhXbt2SkXksTwXwKBmzZpKReRAQkND+eOPP/jzzz/F/xeJEgwUVJRgkDtRgkHuRAkG+SNKMMgfUYJBzkUJBj+RKMEgd6IEg9yJEgzyR5RgkD+iBIOcixIMfiJRgkHuRAkGuRMlGOSPKMEgf0QJBjkXJRiIJYWkhHji4 0UhWfhLMUUhwSA5kYT4VN2lhyQFVKKig0FyorwOE5MVS4mKDAYpyUkkZlEO4xOSSFbYHJeIwoNBSjJJiVnoVggJSYqrXYUFgxRZf6OYdV4JBiIJvMEsfT3U1 dTQ0JjBObdwhTQmiggGXucH0bmhBhrqaqhWrkxlIaiqqTN481284xTLsSkuGAiG1/EEk81qoaoq0WHlyqp0nrGb999SFAZUFRkMAp5swqKZUA411FGT0aGq/kBm3w0kScEgS1YUHQwSA16yZ7RItxqCjVSV6lYIWs3pvOIpEQqabkUFg4RQa/b0r4pWBn2q1ajPxIs+JCpAGpVgIEjQ1X***6oiXk6polIIo/VPCY5TvIKueGAQzdPFTVD/JVV36aHgX2UZsPUhvvGKk1pFBQOXM1PpqVuC3zLoUOX3qgxcdR8/BUmnIoOBzw1LTEtnLocqKgX4vUxNzCaewEFBG7eKDgYJPvdY2Skr3Vam7vQ7hCtouhUVDOI/P2Wlfhb6LFKavkfdlWCgGBLAZYvqlClkyorVo1FT+5NfW67gSZDikYHigUEUjxa0RFMo1JX7ruWmjRdeXi6cmdIYdeG3AsaruOOToDCpVUgwcDnD+HZlxIah dLvx7H/qhpubKDxne9f+TBp5HGcFSaoig4Hv7UV0KyUAaS1Tll93lerwGUemGFNWZHRLGjLquJNC9gQqPBj4PmRdZ0GHf+nQVABVLy8vafDj05dohR2qUVgwCHnO6ta/8GvRMphueMRHN2md9/AiKCJBIXoIlWAQdBkL7ZL8XnchD3zvsrB2JQr/qs/Kp0EoGhooIhg8XigBA02L47jESn59vcIA7QIFqTR0D28+K04XruKBQSjPLHtS41fB6Nbpy+IHgSTJXE0I+UJo0DcUpdNF0cGga3EBDBoN4pBr+u/JwU9ZNUhPAK/CNBmwH0cF9GI/BRiIegxK1KHNES+FTWdGUWgwaKXCr8UrMOTCZ4XU3f88GARdHotOiV+pPesGfnFxWM2vSvlCv9Fq1TOFG05QSDBYpE+1Qir8Vrw86lW10dauhmqpwuj2Xc51 1wjiFWhoV/HAwImD/ZtTRACrmiM281pRB2ulovBgUEIAgwb92GObIldG3+0cQ01Bx2odxnFTAe3wTwEG3QQwKPA7RcprCHVcWxyamgzkrLvilleFB4Ni5el/3FMhe1z+x8HAlu1NNPmzoB6z7waIW2vJL+eiXaEQv7VexXMFG05QVDDQLpx5vOz3sprUHH+Q5/7KoYTsxY69AxpTQKUoJvOv4aOABkJWfk4wAL/by+hcVIVybYZzNUDx0v5TgEH3zHW8iFYTdjoobnlVZDBY17YgBQr8SrGKVdDR1UVXCHWbGbLdOkEhQOF/GwxsN1G39B/8UnsWt1Md2KdzDNAsicpvpZl4wYMIBWrxKupQgtYvKlTquYwLLxxwcHDgzeFxNKgsGI/f6jLtpKPCTE5SPDCwZ9+AZvymUpBmk/ZjF6tASctCfk4wiMPpyHSaFlShYvuRXFPARVE/zRyDotVotOSquI6LgrObJ2EKOEk7VRQaDNr9KjQIMsBWoVJYPopXgsG/LfZbG1FOtBrhjwpUrVmb2rWFUEOD0r8WEGfUX+PP4a5AZKDIcwy0xp/CPW06rQM7O9SiuPC70fJbeClIp4HigYE/18YaoyHoqbDhFPY7KrCV5WcBg/7stZe5EP+R4zMNKKRSgLpm67FSoFUyqfLzzDGoS7vjirJG5u9FkcFgjWjy4Z+l6bzyBu9tbLARgp2DE0FRyn0M/mWxZ1vj8vylktUyHGkoPoHz7hEKs45coScfjjmCwzfpz59vMKx5ZYGIyzF4xyuCFUSBigcGSfieHUV7VdHSxJK0tzyBaxpEhfJ4wQo2L7mOp4Kk9qcAg4YDB MBK16H13vHUL/kbKoVr0XXNS2IUMO0/DRgU18PwoJvCpjOj/AyTDwefD1ZI3f3vgoHtZuqX/hOV6qPZdecl7969Sw+319C1vHBNpRhjz7rxTUEcm2IuV2xBlV+FQl5KDd3a9ahXTwi6lSn0m2BImk3hpF2E3Ez7f1MUcblicrQ9xwc3p5Jo74eiZamqJ9Vhv RpULqSG6fhzKIopVmgwuLUQswpCmStcHFXddB1qlCwk1OOyNDE/wFsF7fdWfDB4wFpTQbe//M4fqtWluhWFNpgPv6gw4JpRFBcMnrGqpQoFhPre75inwthHWfkfBYMUbDboUayQCtpTb5M5Rb4c6VmBwqIJNqNO4xquGPNGFQ8MknHcbUjN4pl7W8qbzuXYh xCiFKjUK+oGRzH+Xjzfak7TMvI6VO04mUuuyuWKPyI+N+fTvXwWvX6arZhxwh5Pf8WdwKH4GxzdZ3WXrHpVC1K57jbsFTTdirzB0YpmIogtSe+jHkowUKQeg 3CfN7x98wrnoOgs9vVP4puPDe9ev+bZxyCiExSjy0ARt0SOD3XB/v1rXr+WD/afFG/tnUKflZDgj4e9vA6d/EJRnDUdig0G8eF+uGZRDt86e/NNMXM8TRQdDFLivxHwMbNuX79+h61jsEIOz4hEUcEgJTECf8fXWFm/wy0kTiHP5lFucPQTifJ0xdyJ8nTF3InydMX8EeXpivkjytMVcy5KMPiJRAkGuRMlGOROlGCQP6IEg/wRJRjkXP7fwSAoKEip9RyKCAzu3bunVEQORQQGW7duVSoihzJp0iTGjh2rVEQey969e5VgkA/y4sULJRjkUMLCwvIfDKKjo9PA4Ns3RR/xU1ypX78+T58+VSoih9KlSxd27dqlVEQOZdq0aUyYMEGpiDyWw4cP06FDB6Ui8lhEK8xEe9Mo5Z9LbGxs/oNBSkoK5cuX55dffqFFixYYGhoqQw5C0aJFxb0GSl3kLJQqVYpq1aopdZHDIDozvlKlSkpd5HHQ0dGhZMmSSl3kcRA1pESOTamLfx709fUpUKAAJUqUEPcei MGgadOm5GVo1KhR9psIKYMyKIMyKIMyKIPCheLFS2Dv4EBgUDAqp0+fJi/DmTNnOHfuHBUrVuTIkSPcvn1bGXIQqlSpwsqVK5W6yGFo3LgxFhYWSl3kMHTr1o3OnTsrdZHHYfLkyeINg5S6yNuwceNG1NXVlbrIYTh58iRqauq4e3gQFR2 d90MJqSI6qjO1W0Ip/1waNGjAy5cvlYrIoXTt2lU80UspOZMZM2aIJyAqJW/l2LFjGBsbKxWRx2Jra4uenp5SETkU0dxA0dBr6oKBfAGDr1+/UrVqVby8vJQaz6EolyvmTpTLFXMnyuWK+SPK5Yr5I8rlirmTgIAAsc8W/SsSJRgoqCjBIHeiBIPciRIM8keUYJA/ogSD3IkSDH4SUYJB7kQJBrkTJRjkjyjBIH9ECQa5EyUY/CSiBIPciRIMcid5DQbx7udZs3Qcy65551uaE72us2nFaOafd0cxjkLLLHkNBslBVhzdMIRJB23Jr6OjUr7YcnbLYCz2WBOpoHpVgkHuRAkGP4nkDgyisDk6n ZFzd/PQN/qHnvC/O48Je07xJkARz//655I/YJCC142VTJq2jOPvv/yny1/egkEizjv60K1uC5a8zK8JyUm4HR5Bz1r1mPv4i0IeViOSvAWDFALvLWOETmVGXwoQtJw/8vnlJsZpl2HwKV8U8zBrJRjkVvIEDLwuj2JInz70G3yUt+GZD4rNGgySSXA6x+ihg+nT7xgOMfJMnxznwLkJY1l7wZHwTCX8K9a7hjKoZ2/2vwrNUDhTCHmxk7FD+9Knz3JuuEZmU0F8uDV5DIOFdM+/6MBX6VF2YVZ7mTSyB6adjMU7kqWFqcd5F/LvVYOswCDiw2GmjdrGRfsvGY7v9OOO5QSW7X2Ej/j4szAuDSmOSsVubH73Y4bYcXMtSvWfwllnRTrjL+eSFRgked5i/dwBmJl2ksnrTozcegvfH2piJvN6cT1+/6smw896/acNxffBIAXPSzuY3FGiQ+NOXZmy9SKe2ekw7AUrTdpibLYXD6nH9r21l2nGqc+bMnHDaTwyPh/zkUsbhtJJmledxq7iqFs24Br+li29jGjTYQsfpXEEPj7KLGkaO3TqgsXKQ7hkLN7xXtzeNjI9jlGL2eOUVR2I4P3JefQZNo9tb0IzXQ2xOsOC1Lg6dmHU4p3 YZdGE/zsw+PL+EovT3mPCcMvNvM+O7WPcOTu1O830FmAtTXK403WWpT3fmSGz1mEdJVMHvthxdW1venbrjLGMves9Zha3/bKII9aHawt60UR7Js+l5jDK4x5rOkmfNe7MwCnLeBme8cFv2J+dgUlqHvcZh+XzrG3R50eb6TN4AnNuZe5Nigt4yqa0uDrR18KSx1kweb6AQcJXHC8vonevr nSWsRd9Ru7FNhszmRzjwc3FZoJvHM8190zKJNTqgOCnBjNi3FV8M9SpmOBnHB49jq0P/SX2Pe4zLw6PxmLrAz7JnPobb3eEwQP7s+SmD3l1GHAuwEDk2C8yZmBX6pZN3RRhDOcCMpfaLMEgJRG/k/35TfxcOVrseUuUjAdPirrNrGKFMbS8S0C8fLy4nqWzalOqaqtQbc0dAqIyGKkjPflD/N4C9DhoR0QWtuPb25U0kW7kUGue8A5ppfU53peSBevRbcZKtm7bxrbUcP4NvlH5xeB/L1mBQciVEVT8tRvzhAoknzJbNugUp3H/XbwXV9AEAt/f5OIdKzzCf8zRu+xuTpVRllx2zUcwEJ1NPn05m665kN8HNWcFBomvl9K8XDX0TGewITWfN0+iR/PGNDLfyHXPvztUNoUwl8dcu/GQD/7R/Jfle2AQ+mYL22eaMGmRRIdrxregrqYqgze/JjiL+8MezKdt85Z03+MlNng+D9awanhnJi+WPL92YnsaV6lA54XHcEztq46w5+ScnjRuac50cV6tY4pZW2q3m80+p8y6D3+xGlP9xhhtdhXXDf/n21k/0piJCyRxrJ9mSvOqpWg/ex82qU4syoULi/vRpGlXJm0W3beeGX2NqN1qMtvt0ktorPdddo9phU4xwX78Xofup+VNetCbA2we044JlpK4NszuTetqRWk1eSsZGeJ7YBDlfpNTiw2wmCV5zybLvhhULYzRjO uZoUmQGOdjjDWqSe3578TDCKEO59g1Tub5BcNor/0bTUev5vlnqa9zu8gsIxWKtrBgrYy923/yEo5Z+O04j4tM71ydajNeItL6N9fr7J/YirHTJc9tWWxBJ10VGgxdguDPpJEE8/rAJFrVb8vglaL7trB0khl6tfsy73FAus3/5sBFS2OaqhYQ7HIpqq19Jxd3pM9Djk7VZ8xkSVxbl0+lW00V6vSbwx0f+XTmCxjE+HBjVjNUfmvPxC1SXW1YzvgO9Wk6aAo3PDLlIEEPd9KoSFU0mxZE/5ArKbL5lhjK+y3tpb6zNuZXPOVsS7jrAUb89idddzhIjmCP9ODwyN/4w3Qb9qmQGXSbeS3UUGkxngt2YeRV/27OwSAhnGdLq6FS2ZDRIzryV5Ei/FZkMleCMhvTrMEgDqf9/VAt2RbTzpqo1JrIZY90J5QU/YBFGhUxXfaIIFkwSE7GeX9bSpqs4/TW3lRstZLbn2RRPBmvk8PQKN0GE5MaaLTeyL1MRjuCF/Pr0KhPRwxLlMZk8R0+SenX98wItMpM4Ki3Yo1KZgUGX25OokbZASy/75sBDBzY0ViTdqMOYpvD4ylcdjUTwGAuV7zy8aOCT9CyclO6rHtLfvdLZAkG1isxVDfD4pBshUzC5/4qOlTSos20E7hEKVQx+Nfke2AQ5fUUW4fXpDXcEl6wyUQVzQaCsfqUyRrwcF5bWjTvzi6pdwt1fsDrly8IScuCd+zqoUl5XTMOuopfiMfJaXSp0piRR9Obsc lWm+mq0YjW894gn03feLnaFP2GRmx0kZjKr+5PsXr+mPRj3Jw5PEiHCpod2OkgzffL8+mpVZcBe9zTDaztXvpWq0fjqc8lcYR9YO/IZmhWNWLExD40btqEnufkm9bfvF7x5sld0j/dk7Nja1OhQnPWv5evqd8Dg7jPTji9uynTkvThypQGqFcUyrJ9xp7ZGJyPWdChem3mWkuMWZT/e6wfXCe93R3E7TlNqFSqNotfSmxmgvsl5vauSKPFb3+gFMTheVFo9etUY+pziZ2PCbbn3f3LeMjk79NlrVEtVpXZDyX3hNkcYXL1KhjOf5Y+J+HLI5a1rEH5 rucRn7kb+4n7q80E21uHPlPH0rGRFg222MjHHvqR9/fO45qU/s1vN3dA84+KTLol30WRL2AQ68NNSxNUq2/GXubnz49m0uCXP2m2zUneMUd5c31FS8r32Mrpdd0oY3QQV9nr8UE8XmVC2RJt6dxRi1+bLuX119SLKXzzOM6kcqr03+8ssY9RXpyaXI7K/fbjKuoZSLTnQOc6/FVlMJvt8rZplXMwSIrF0+o455+78uXpQsoU/YNfCk36B2AQi9O+gWhUmMWhxwcZ06IKzWcJJCx10NmBQUqyC/vblsRsxwuCfa4xomwTLI7ZyvQKJOF5fDha5aew66QlBhUasPCaD3Jo4HmenrUbYHHqAPN1qtJ9/g185cBgFLtsQhRqwlJOwcBOCgb+D5cwY80Bnvika8LnwjwszLuIDxjqZt6fgYP708tsFZcdI3A4ZoD25DVcv3WSFRN7Cvd0xXzuGaxDMvSaxL5hzcyh4nd06 WKK2fQTvJHr2vvEzRVT6GMqub7iqj2iKhz+bBnTetYTyk1pKtZoQQfh+THbbuKaT+dsZQ0Gq2ij0YXh2z8gX2rjeb+uFTUrGrL4mr+4HERYbWPxqYtcubaDr eNN6dJ/DeddEoh03s/SVWs455RIhNNuloyew8H78uO70Q77WLp6KYdfp7o+V06sHY9pF6nux2zlmlv6MFXEuz2sPHmSs9cOsm+yEFefZRx+8++eTPrP5hiEcnOKPk3r9eJ4xt7gsIf MG9oRo0mn+Jxt8yaIO7OM0NMxZaud6O8QbkwzoG3dvpz/LHNb5CuW99CjYtt5vJItN+EvWD2uM61HHSYg206+LzxZ2o16WkaseStxaA8XdqRddVNO+Mtm3ns2D2pA2eZTeSpqQUf58PraWc499cHn5SbM29eh2xm/v9FHGFYb+tCwcksWPZMfjvxncwxisd87jFaV6rEmA2AQ7czxxd2p12MDbtnOOozE4dAYmpWvx4x7EoUleAhg0KsiDX8EDGI8ubS6J3pdVuCYLTBH435mKq3K 1GT89XBxXfp4ZgImZWuxRtbPJ/pzf5kxRQUwF3e4JITx8fEFjgr2wc/jOjM7q1N384e/SVAcfjcW0LZ0NUackyfQ/AKDW/M6U0l7Jc9lym6c/yUmlyhPq03v5ep9lPc1ljcty8jrPnx+vp3OxQxZ+jIkfb5LfCCPlpuhob2Ms0830at2VYzXWZHaUZMdGKgPPoJbYhAPluijpmIg5KVvns+hyZM5BjH3Z1OyS JEcgEE/1CpM5dynENwPdeX3io1YbSVlyphsegzcDtCuuClbXocKygrjcv8SaA/cxYevqTklgMGxoQIYTODQ2zusNilF/QU38ZOpLD5HjCjRaT5XHe+zQU+DzpYZweDn6TGoXmYYG99knBv8icPNq9B+5IE0MLDbVJ0Sjfqw453oh0RcLsymc5/uWMxZzdq1a5ncSQA7lTK0HnqYt59i+XisPbVr16Be7yksWLtJuGc6HdUbMmz1XXylukzxucq8viPpPnY+q9atY926ZQxp35g247by2C9e7CCeLx+EmUEfxi9 aJ7xjCZaj13HTxp1gl4scW94H7XJV0TMZx2IhDfvvfCAwJn/098/AQLBTVvMwKFuVLosfi0Em5KwZ9fVUqdTanMkLlrF2+1Ws/JMIvNQN3fqNmHDjm2A319Gy5K/UGnsSr4R0Q2k9twl6tYxZ/VbIp4jnbBw3FpP+M1kq1tk6JnTTp2XfuZy1l7R6Pl8ehH69CpRvYcb4eUtYu/UST9zD/9Xy90/AIEEApKEtdOgw4zwBcl1BCXgdmUDXFj2Y8+h7Qy/uHBxTm3J1e3FKZO8Tbdg2qA31jBdjJWsLkjw4Nq4BtZv141Jaj3Qivudm07tZJybd+V4rypcz0xpTtnpnDovgJcmZg2ONqWUwm2eyhSHZhwszW1KzXlcyjBg QcnchnQzr0v1vwSCA6wtaUVarNTsd5e3KPwKDkLssM9MR6uQmXOTUl8Lnp1uwaNKMvqeDv/MCoT5uNKFcpfqseyfJmASPK1i2U0GlUmM6de1K125m9J+2kluZPimFsHf7mdq0IWaHv/e933i/pxfly9VgiZXITQbzYuMgtHX7cV7Wd6d8xebAYGqr1WSj/IgB8S4nGG/0I2AQzccTw6hcRpO5D+Vr8P9fj0E0L1bVo2qRFqx5EyXjoGPxu7mMpqUGcumroOfQV2w0+oM6M+8SknqTCAyWmVJZexUvo/x5trQpKlod02A6MgswOD1NDfUB2zixy4zWqu2ZftiO/GhL5QEYCC2lezkHA9VykznjI3iacFvmd/qV6u128TY6mZTkRyzOCAYpIbxabkhR4y28+CIBgaBz/ShdfQi7P4RLW/giMBiCRrkJHP7oj8fpwZRqaMERmwjJ9fC3rG79J+03PhOc0Du21KxMJxkw+HRuJFXKaFG3TSfx/vCSMIczH74Qr2BgEHprKnUqa1KjRQehQneTSW9b6pT4gyaTT+IkLTWOu5qi1W4EB2xFqO/HQYOyGE4+Q9p8GNvFNKncgRlXJIN1Xvv00W1lyJB9NqQOi76brSfkzwROOInIIIxH45pjbLKFl7KNoHfz0dNqw6gjLoK+fNlRszT6Aw6TakpCX7/H1StIosvQi3Sq1YF+O+zyvXfmn4IB3ifpUa8F7efcEI+Th90aQqtCRak78hzOMs2CwAt9aWzYjhnXRHd94ei4mhgMmcv9VPsc/RrLFqaYjDwltF6TsVvTg24tJnNStiXtvxfTuk1ot+iBpDflwXiMixahRt8jvItFIeTvwCDo1SGWDpGUP4MadTHot51XGVkm4SO7BxpRt8VcHn1niCbo9lo6V FSj7rRTBIp0HfWcZT07Uq3rThzl7vzE1WmGGDUfLNgd6U9Jnhwda0LtuhO58x2L+eXZDszUVdG1OISvqDDGvmXTYBPUjDZiI9f8CuTOgk60b2DO2QzDIoF3F 9H5B8Dgq/VBBlRRRWPIDjwy8NDfgcE3t1vssJDotUPTBjRsMYuLARl9dhD3VwyiulofTgVkn44ol/OMr6FG+Z5r0+ZuJAsOye7uXnZv28Ca1atZvWAcnesVQ9VsEdfcZAp6yhdebxtNjfLdBZDKvn0a43WDmXU0KGmyhHciLhPA6t7S/pSsNYM7cnMWInE6OZFO6vXZaiv/jkinHwOD+MCHLG2oRdF2c8i4uCV/wOAT95e1pUjRmrTqKuRJdzN69h9Et5nzOXHhRZoPERfDCFvBFjSlZL8LkqGSpBBebGjPX/XncDeVDKRgUFFzKc8F2xDvdY3RzQvQqM91RFY4yueEPBhE+3JhSkmKlqtCpT9V+KP9cYLzqb4rABhMEoyk5Jmvt0ZQV0WbCde9iU14xnIteTBICbnD7Hql6H 7QJZ3MEh4yWq0Www7ZESH+UQIG6mXGcVjULx15jYGldBi415ZI4Xqc1Xzq1u/F3jehxKe8Za1OJTkw8Ds7Eq0yTeg6wZJly5ezXBwO88wzgn9v6mE2YHBzCrUrNqD9MKH1mZZWUZiEaeWStJhwDMdMYCCyCMGc662D/pSjOEkVmfhiDDqFGjHmmIvYaXvsbobWhOU8lDE0nsdaU8WwH5tfi2r8e1Y20KBWHQO69umNubm5EHrSt0sjiqho0mPdK74K7vbj+h7Ur1Gd1j0EuHqXoQXne YT21dtgvvZZ+vhyPsk/BgO3w3Sr3QSjuTclYHC5Nw1am7Ds3ld553CxnwQMrkq8RuS1yXQeOJaVzySWKtbKkhYm/Zh8UfS3L4d6CC1czXp07NuHnmKdmdPbTJ8Kv1egyehT4vHkyFvDaNnakJmXPysAEkjk78Dgq8s9Tm+SlL9VMyYxuIc5Y7ac5oOMuhJd9zKwQ12az32U/fr30AesNCxGGQ0LjnlJcyXie2DQinbN+qc5yySv44w11aPOpFtk28fy7RVbTctQuvwQ9n6UEkpUdmAQxN0FxrSt341TGXoMfggMom3Y36cipUr2ZrN95h6Mv wOD6IB33Ngp0evKebMZ1d2cocu380BmuCMlWNDZkJqo9j2Bf7Ze1J2zFlqUKtSJlW++fienU/C5MgPDhmVou9kurTGU8uUV28fWopzZQbyyo/ikAK7P0KHML4YseCZtTiT6cDcbMHA+OZ6OarXZ9EH+NT8GBqE8XFKbcipNmXH3c6aGRf6AgR/3FrenWGkjxqwQ8mTJTPo0KcYvbWZkWCmSxNd3uxhcozKjH6Z3mSU7HaB72YbMfSxVRBoYLOahWNHxuB4wpUqBpqxy+EaM7ymmlpcFAx/OTi5FWaEsjh/dlaq6Jlhc982X+q4QYHDCK3X4wINTw+uhaTiPaw53WKytTlcRGCSm2ow51CuiQpWGneneqxe9hNCztyE1VFSoWH8jL8VrDlPwEoOBBQddI0QdYFzqVQrtZit 5EOLK9aF1qTPmDE4xotr/klUZwEAylDCRYz6KtfI5+6GE4Wyyztj88udI86oYjTyQNvlQHgySebGkPsUradK4g7lYj210G9B74kGsP0ny72MWqxI+7tOnWttBbBd1ifOEOY1UqWc4gKmL l7J0qTSsWMuWbSd45vxFsoz0mz2Xj21ginFl9Bq3ofeo3dx2+ioBOwUGg5hnk2lZsipmK16KnVjo2Z40GDWUze/kx4jTwUDqHEKvYmE0gJErXojntdjMbkanPhM4K2422LC5e21q1TVm7AIZnS1fzcatB7nzRjIXJvTyEFqM6MXSV4qz0uGfzTEI4tqChpQoqMvI7c5SCEjm496 B9NZvz7p32WBB6HP2D9Olll431j/2Tt+gJ8GBfcMNaNxuFs9ki3qCI3tHtqdu27k8jZY4Na/jFgxs1oIlr7LpLvj2luMWetSuYcyKO+7pc48SXTkxsQMNWk7gvuyjwu/HJ3Wmdosp3Mvwyr8Fg2hHLkxvjJ6OIQuvuWQJQ/9sjkEcHw73pOpvxTGa9iyttfj54WosGlZj0q1salG8N7cWtqZelSZMP23H3w5KhTxlTdc/0ep4lNRpuaGvtzO1gSpjLwdl3buXGMjj1UY01KzLxKPv0noZSf7M661DqKttynEZ8y/63XrnSHSrmsn/zo+AwVdebTGhqYYuo/ZYkRU+5+9QwpY0QI14vY3+LQphuNY+PX+TInA42JeKgl+qYdibnlJf1b1TA7RUfqNO9wuSCaFJQelgIF2un/zZik3dqqNrvplH708xpaI6A2SGEk5OqYDmiNN8CrPl+PD6qNTpwxWfvK/vebPB0ZvFlPrjD34pPJtHWUwv/3swSCfpONcddCxcmUZLFjFFVZVeKx8TLB41COfJvIYUNejLjIVLWbJ4MYvFYQUrLdpR6LfaLHz0Wdyq9zkuAYMDLpKa/OXhBPT/qsn8jUvQL9mFeVdcJEYn+UU2YPDfm3woAYORHLATLGuSPZtMOjJw+AI27NrO9u3b2bX/rZxzdv4eGFiLqoA9q/TKYzbrOj/Urg24xcnNI2jxZ2UGLL/DJxEZeB3EQLc95utfEJrP+vtnYPCV+zMbUF3bjK3PJBATJAKDIQPZYCXvrDOBgfAlV0a3o9+o9Xz85MSyQQMYtey2dMa+BwdMqmPcYy2230lrsAgMBpmx6Gl +L+L8cfmnGxyFPZhNu7KVabfwuUS336xZb9qOzt124JYVc395zaFRulRSq8XsS58ylOdQ7s/pgJFeH/mJgd8eM79Te3S7HhV3vRJpw46+xhi124BjVpX3qw2nJtRBtVJVJp70zLD/yVeeL++OsU4XDsoO80S9Zo15e6Hu7JOfUc7fgEGEM5dnNUGzYgVGHnQlO8T7pxscxX48zGjtYuj0Py8Bg1gvLs40R7/2bF5ltc1KrC93lxigXeEv+m61/6Hx6ATvS0xvVgwts1OSlRXx/txa0peWVSbyOKs5QPFBPFljRM3yBTFb8x75Xv043C9Np0dZPZZay2R8ki+35nWjRNXFPM8wRvtdMEj6itW2LtStoEKnxVbZNij+/yYfhvNqVWMK1urJpdRiEOHA4ZHaFDYax4plqX5qMUuWLmJm30b8VrKtdF7LZx6ngUHqC1MIfLyApr9r0nrFfCaX02DwQRf5VQn9D0pWgXy6wciGAnyY7eF9H s/NytWqBOerc5g5ZTxjujek0K+/olKwLiYjLJg8bRdPfGPTHOs/AQOBf7Gea4yKuibVfv+DzmueESayEt7n6F6vCC02vMu821b4OXqVL0qNBY8IThAUe3qoBAycv0oLri0bDItSu5IGKi138PKz1OwkPf/pewz+GRiMEMAgWrTOi+V6rTBo04/RgsGfKA5jGLPyOs7SFtlH8XLFrMFg2xtRmyMKu+VdBOdpzrqnMuYm5jWrd1/iuqsAD18es+zqO+zSUNqaUTWrYjT9El4i9YZdZpCuDj2XPuRbPuvve8sVxx2W9QQRvN4+jGp/VheA5QFB0s8P+GEwENzY47l0n7iSxStGMmLhbDZZpdbaWLwPjqFFlVaMk2smOXPo6Gn2vZB4vS8/FRh85cPxO9w/5SH32+U5TSlSRZ8FjyTt029PF9O+WSu67nDNPCQX6cq5eU2oUacli+5mtUVyIj4XJmFcrjTdhJZZak+C94kJtNJqwZiDPuIu78jX6+iq35R265wyL3+N9uLa cgNq1WrAnGuuWcziTsL/5jy6VyiO8WLrtH01Ai7NpF2Vhgze6ZbJuSdYraG7UUN638pwRdTlvKETdWrWYPI5++8OQWYPBtF4PXnCtY0fZOY2JWN/YAAVKmgw4KSf+BtiP55kXIfa1Jr1OjN8xH/m5d6+NKyhzujD1pmHywTg+vjmISevf5KL99UWIwGeNBl9WbKxTrz3FWaa1EBrwuPMvR4JYbw7Opym1cszePeLLPYjSeGbw3Emav9CnaEX0pZwxn/YxxDBFrSZ84pM2yUEXmWGiSYN92coC0JL3FEoB/o1i9F38yO+t1Xb/x8YJBJqtZ2OOn/Sdr2obCYQ+nQ1TWuUofeFzFYt/r1w7c8yGB35JM6fp8szgoHINX7k6uimqJTXpPpf5ekngIG4DKUtV9yHZM+tFPzvTcO4fBnajb7Jpzz81JyDQfxXLo5I3dgoY6jNkudf0ypn1mAQg/02E4oUHM5B9wwK/GrNNH3JuzrucCZS0JnLhjrC33VZ9iwki4rmz6kuRVGpOIGr3hF4nehDsV8GscMhVGoAYrBe3lD8vqpLHhOcWtOSHrGgTCFaTL6Et9Ta+B7vS4lfKlHH2JwBA wcyMDUsvYR92L83/TArMPh8eTgVCnTFMtMGRzasF1oVjfrulG5wBHYbdSneqDc7xOP8cdwbWQ3Ddt0YOcMSS0tRmEp3gxaYzjuCtYDhrrv0KNl3stzOh07balOqYXfWvpCuRwy15 sAEExq07kCPVD0NG0f/tVd5JtpyMfwdy5f0wbRnT8k1k7o07LqQg28CJXCXEsiNSdo0qFWfjn0HsubCWwHs/h/B4NUyWlQoQzk9Y/qmpr9/Gzp37MmYtdf58CW9sn461gGtHt1Y/kJ+2Mb/lAna9RphcV6mPy/ejjVD+1CmsNCqmbeD97LWNNqFK0sG0Lx5K7qkxjlkFL2XnOCSjaTv5fPZHtTs3o6ZD/Ibl/ICDCL4eGADY5q3wTT1e3q2ppmBIUP33MVd7Cm+8WyZMS1ad2fbx4y1NxaPEzNoJLIbf1bFZOgYhg1KrXejWbr7sXjiavJXW64sakuzGtUxEl8zpVXz5gxYck U6Qz8Kqw1mwm/tWeuYsZ7G4Xt5Ma1EcfyuRschYxk+ODWOUSzcelc8bp7yzZlbq0zQry44rAGia91o07IJvS3P4ZDq8cJduLFrivhZs1ZVKVpIheJNugl/T2HZjvdixxl8dy3GBYW4filHu0HjGJEW1wjmCuXKPfFHwCAW/0dnmNvMEONUvfbtRLuWdem64hwfPku+6+PpCXSso8eMTMNOiXx+tZtef4jsaHFa9x/PyCGp6RjG9KUXcRXy5eOttZjVaYJ5ahzm5hg368GMgxdwF5NEPF5XZ2NaW5txjyIywVTYh6MMEW30pPIHLfpOkIljKJPnnUTUQUlsMG+PjsakZmmamIuu9cL EsB7th2/jRbAU0WKDeHtmgfjZ3p0bUUmU7lrG4jIwbcF9RO4p0vUC48uI4vqVJr0mMmpoalxDmDDrCO/C8xkMYry4MqUlhUrP55HMcsWUKBeODVRDRXs6t708uWxRHpXCppzOYiJoQshzlumpUKDJdlwi/bk/35BCxWZxJ1p+7W6S51X6VBN96y8MO/dZ4sci3Dk8oiCFTbZhF5OSVv/erjOitEpVjI/aEptHOxzlHAyS4/F+toNtm9azfr182LTlIu+D4r/fYyAiLbvr7Nn5EOdvWWyj/H4Pu7at575rDImCDrweb2XX1ke4RWbN30Hv97NnwzVsv8QQ5nqXfTvuYx8am9YyiPG4z76dm7jv8i29NZHyCasDu7nwzDNtH4Qo4dn9O4TW3ry5zJk9m9mpY dcDXL/9e9sDZwUGMZ4PObTzBq99IjIMe3wRWnH7OHfXnhCpar/YnGDfuTvYf04QWhmXmNi2Mytvye/RGX6+N6qlu7LwXiChzmc5cPcZbmHpbw6zO8WBszd5HygzVT78LSe2L2Fuqp623MZVxn4kfzzFvjVzJdcsF3HxfYBcay7O+zrHtixi3pzZHLjnwJd8muGZFRg kB73nyvENLF88Lz2v58znyDOPTMNIUR+vcuzWTd4GypeBKLfrHD9zjifuskYzgYB7J9i2YhPnXwZkPswm3o3bR1dimRrn6rO8+pT+3mi3W5y8eYUXn/7NdTA/CgaiTPTg4fm16d8zdz67r1ql9wJFP2dpp2a0MN1CJi4QrUV/fo1Dq9azbtVyFsyVqXOzF7PrjHX6pkQxrjw+tph54muWrDxyC7dUFcW+ZUNPfRq3WYVDJrXFE/j2NkdFcaxewUK5OBax/fhLPqVmeLw3L08tZv4cSRzLD1zBSbapHeHFk9Orxc/OXbCUlavWsHKRpfD3anafchK32r/Y3ef4ynVCXCtZaCkb1wI2HXyCb9KPgIHIO3zB7sF26feKyqYl6w9dSZ9gmODO6SnGggOcxstM3QWC03Z9yukVa1m/ZhWL5NIxn3W77ovHuVPCnXm4d0F6/Z27it2nZTb8SvTh2rwu6FaxIBMXCLXkm9dLzi0X4li7WrCZsnHMY9XWG3xM0100LreWSfN3Dgs3HuC57DhA3Bccb28TPztn3iKWr1rLmiXzxGVg7bZX4uHK6 ABrLi1bI8S1hiVycVmyYoOQT5H5DAaJQqPz+UV2H7CSDIWmqUGAuDcX2bnrJjYBn/lwdQN79r/PesVAYiRuDwVftv0Z3nFR+FpdZve+l/gmpmTKP/+n69m2cycvUyNL+Ibzw53suW5HqOz93xy5sHUja2+7EZdH49/KQ5R+EsnL0xVDLw2ldIEqDDshv+Ofzez2/Kk6jK2vFGc2fF6J8nTF3EnOD1GK4eO+ERhWbs2Y4/75tLInDo9TkzGu3JTB+3xRHJz6e8n5IUqJBD5cywC16nRc4Uj+bNCZxOdXOxihWRXD+R9QnP6rvxflIUq5EyUY/CSSl2AQ5/WYHRZ66DZvT89hIxgxQhRM6WTYj0kHX+LzH9z2XwkGuZOcg0EsHneOc3zPZZzyrVzF4/P4LCd2nJWZz/JzSG7AINjmJqc3HOJ1vs3cTSLU+R5n1+1LO1vhZxElGOROlGDwk0hegoFYvlhxYP1cpk2ZzOTJojCdLQ89+W8cspxZlGCQO8nbY5eVkip5e+yyUlJFCQa5k/8XMBCJjo4OERGKM8v6Z5OGDRtiZWWlVEQORbRz3IEDB5SKyKHMmjWLKVOmKBWRx3Ly5EkxtColb8XBwQE9PT2lInIo8fHxaGtrExQkmeGjYmFhQV4HUVd1sW LFxDNI8+P9/wuhdOnSmJqaKnWRw6Curo6+vr5SFzkMIiNbq1YtpS7yOBgYGKCqqqrURR4HMzMzSpYsqdRFDsOQIUMoX74CTs7OhIZ9RUXUXZjXYdiwYWIw6N+/P/nx/v+FIAIDExMTpS5yGERg0LJlS6Uuchhq164t7ppV6iJvQ+vWralcubJSF3kcRD2EIjBQ6iJnYdCgQTJgEKYcSlBUUQ4l5E6UQwm5E+VQQv6Icighf0Q5lJA7y TSUkB+RKCcf5l7yfPLh/5goJx/mTpSTD/NHlJMP80eUkw9zJ8pVCT+JKMEgd6IEg9yJEgzyR5RgkD+iBIPciRIMfhJRgkHuRAkGuRMlGOSPKMEgf0QJBrkTJRj8JKIEg9yJEgxyJ3kNBskh1ly9uJ9zb4 LzLc0poTbcvLyXky8DUKwj0dIlz8EgwpPnt3Zy4L5X/u0AGeWH1d0d7Lnjmnm7bwURJRjkTpRg8JOIEgxyJ3kLBsmE2Fzl6InLvPCWbLUX43GHMxcv8txT+rfnXc4Kfz/z+Mm24stG8hoM/E4Ox6RuTcZe8cu3NAdenkyPOloMOeP9PwMG4a83M6ZuMUx2OhGXT2mOsD3AlPpFaLfBNp+2Ys69KMEgd5JLMEjG9+EB9uzYzvbtQti5m71vv2S6K2swSCE5w JqDe/ewfcdrPmc4/CElUaDSI4e4Yf2J6Ezb8cXh92gXOzZtEwxvTKb91yNc73No7w4hTdewC44n63MlwnE8fog9QrrPvfVLiyPK/RHHDmxk9fIlaedoi8OBJ3hEKNYhSnyx4+yRKzxyDv2p9of/NyTLQ5Q+23LjzC6hnBzhkV1wNoY0kYDHNzgmlJP9d97yKUpS7l8t1KNAEV2Gn5McDRt0pis69Rtgcd5X/HfwuW5Ub1CfMWd9/hP6+zEwiMP50Qm2H7zGy0/faUvGOLO/vxFdO6zERq5KJeD29BTbD1zhmW82B8zHuvL0+LL0ern1BDfcsnBPse6cGG1CZ/35WEsrR+THFxxfKnluybLVHLj2ki9Z2YV7u1kufv8Slu25wOOQbIyn9QW27z3HXY/M8Ud7veHMMmkal61i78XH6YdBycjfgUHcp/ecS3vPSnafvUdAdjcnBHFv+UA6aI/ivnQBWHyQHRdSn1+6kp2nb8sfACS5C79Xh1mxRHLf0i1HuOKbDUolfuHZlhF0UB/EDem5x4mhzlxJi2MF245dxTuTzU4i6O1xVqbGsfEAZz2zPjkj3v0e2/cc4YxtZsWnRLpzc7k0riXL2XzwPO5ZGL98AYOkaPzfXWDblrWsSPMNy9i4J+u8Fac36QuOlzewbecR7DJ9TgLRnk8F+7OH/UfsMh1pHf/tI08PHuauU5jEhyVE4PrsIIfvOhKWJJM/QS/ZvX0zZ96FkJhHBJxjMEhO8OXl7rmYlMlw5HKz0ax/+YkEmYKR3emKwReG86v4OT2G3fKU+6ikqNvM/KsQBnPvEiBnsYWbgh4xtmYVShRTofH2V3yJl7/uedicwiqS40ZHnHcnJgtlxfkcpOsvkjTXmHcbf7ljl8tTs00XevbqRa/UMP8ctqGKdewy79dS9a/G9N/9gfD/hPvJP8ny2OXXq2lbRVIGGk09g1tWdir8Ncv1K4jvKdBlAXelDVy/h9tZuHQLlxy/iv8OvjSAJoZtmHFVcip6yJWBNGtjyLTLfv8J/f0dGCQGWnNz80iaVhD0+VdbJt75ku29MdbrMG3akg4rbdNgLPHzB+5sHYO+qvD8H/qMupHZ1CYFvebMUnM6dDBIr5sTV7H/Q+bSH2u3i376TWk5/y0ixAh1vsqhySaYdZA81721Djq61Rl3+Al+qQyTGMy7k/Mxbd4AfXPRfd0xaNGSpiP2cD8gve4nf3Xm8Z7JmOgUQOWX2nQ77SsX91e3OxyfZYJ5e0lcZm1qU72aJsP33MMrw3kR3wODb16POGNpSs+2kvf0aF+PGlUqMn jHbbJgERK9rzCzcz20Rz1EVCojfZ9zfmFXerWRPm/UkBqaZei/5QZuqSvHkwVnc3sD/VvXp1FX0X2Cfg2bUavHWi57Zu7tSvS/xxKzuqgPvIXIz0UHvOHq8u70NpDEYd5ReFa9KObrLuOcmi0pUXgK9WVom/rU7yK6ryed2jVD13QZ591kjmYSwMbm7EJG65cS6lsJqq55J5+nAsjfXm8u5Kskrp4mrdFTLYjpsrM4ZDgvIn+OXfbl1pxGQtqqSsuHEMxMMNRrwYCNx3HIVO TjCf9wGtMSf1JUqwA9LgYh13WVFIbDLhOp7zRi3odQOT8W7nqAEb/+gel2B8mJtAIUHR75K0W6yBy7HGvH0cF1UdFow4p7gt/9d8EghdgvFxkjON46RoMYKRiM0cM7UefXXyUf2WoLNuHpVjZLMEiJx/lAHyoVq07dWsWEZ5bzUma4MSn6AYs0KgqZ/oggWX+ckoL/+X6UbLSItQtbUNp8Ky8/y1r0ZLxODkO9ZA3q6JVFt89R3oVmbOkn4LChFbota6FbpCgdlt7FX2qhfM+MQKvMRI5559H5lXkkWYKB3TYaarRn9GH7n+rks39DsgSDtxsw0astlE1VNNrP YN+r8ExdzuHXJ9HdpCqapcvRwHwJd/2zfn/Q/zIYhDlycGxLqlWuib5+bSo27cq0+9md7BPL27VdaNqiA8ttpB453Jnjkw3RqVidFq3rUrlxR8bdznBqT6wfVyx7UKNmD9a+/rvTmOKw29kP/cYtsbSWxBH4+hBnDu7CIfWWqJdsMClLSe0uHHKV2I3QZ1sZUrMGbec+TQPtmEcrMSqnR6tVdlLj7MXVRV2oWVaLpoaN0arbgj7nP8nFHvz+FGf3beJ9auMo/gO7elWkhFprtjvI25XvgcEXu4uc370G61TzleTE4UFqlKjYlE22GSk2EZ/Ls+hSR5vh9yWpDxNg6MLOFbxOpa8Ud06O1KRE2XqseSdJXKTTOWY1qUb9kZfSeyJcjjJUrSrVJj3NMFSQRMDdJZjrqdPvhiR/v3nc5dL2RTxPyxJ/Lk/SpmQJHRa/kBjuaI/rLG5ZjZr9T5CGUD4XmFhVg8qj7iNmlIRQ3h0dT5PSJdFrY4CebhUabrWRiz3S7xlXt87lUZqxC+OeZU3KFK3E7IfyPUz5AgaxPty0NEG1+mbsZX72PDsA9YJ/0fWon3zvdFwAz7Z0p2SThaxd1Iyygy7I9yzEB/N0dUeKF6lO7Vpl+M10L55pjeAUQbfHmVROlf77nSVlL8qLU5PLUbnvfj6KIwrk0azOlCvZiuHXfPP0U3MMBvGRDlyZfZi3ad0jTmxrXIzfBDAoqDKa0wHplT drMIjFaf9ANMrPYMfZRRjXrE2vbe8IkWo2OzBISQngXP/S6K+5id+Ho5iW7sKC2x7EpaQXXs8Tw9EqN5lNu8dRp2wH1j0OlO9q//KU6a10Gbx/K7OqVMFs/g185cBgFLtsQlAkNMg5GETw/uwBNq5ZzerVQli3mQcyXa9x3s84fewZNjL5RbQXl0/d4fnH0PRhmqRgPlw+xN1XHnxVLGb6IckSDKxX0bbqIMbPnUn3Zq0ZMP82cr19CZ/YO7g15otnMbtTG7p3msN1KRjEeD/iyo2bvPGV6C37HgNphY335cnZLWw++wTPn5DivgsGgU/ZPX8Oy87YYX91JgYd2mBxOxswiH3L+hFtaNN/Iy6pLfXglxxYNIfFxz9gf3s+7Y30GXZdHgwi325kWJt2DN39A5MV4+zYPcmIVmYrsM+WIb7wZGk36mm1Z421OAaeL++GUdWO7PeSrT6vWNOrKWqGK7ERVZsw W86snsuc3S9xfLGVnkZ16Hbm7+AvDKsNfWhYuSWLnskPWP2zOQbf+LBzKI0rNMbyUYYPS/Th6qoeNGo9mVdh2T0ficOhMTQrX48Z90TKj8fpuAVdygmgYCubRx85PbkNpWpO4cFX2TgCebClHw2ajc52eEV0zLb7mam0KlOT8ddEgJKIx+UZdC9VncVWMo Yj3psb8ztQospYbomKSqw/zw8sZPySK9i63GRWZ3Xqbv7wdxmN340FtC1VjRHn5OEsv8Dg1rzOVNJeyXOZHvH4gMtMLFaOOqteI9sEjQ94wqYuZeh6zEZI52qalezHXjeZXph4wbGv6IGG 1gL2n5lGc61GjDnrLZ3QmT0YqA06gqegZ+fTw6ivooPpdus8n+uRh5MP3djbRgIGKrrLeC7T7Z4tGOzrh1rFaZz18+XVqqb8Ws1MoHeJalOy6zEIPs+Aks1Y dS+QaIE/j7QrRn2Lk3yMSiUDAQyOD0Or/HgOvjjHnJYlMFr7nGAZwA67PJDSjSw4YHWD1bW1MLHMCAb/kR6DGG9u7htDd30jOnTpSteuQmipQT3zaey08hUPsURbL6Zh4XqMO2BDau9ixONxNK6oidGqFwSklvQvV+lbTguzxbf49BMewZg1GKymjaYZU/ZdZe+E2jTvswjZhm6y42r0W3Vh9NnbnBluiJHRbG5IwcD/dBd0GjRm/AWJ4/+cJRgYMOV6mNggW23rRfWqFWk99yjvQ34+/f3o5ENvAcobtW0rtPizAoNkwm4tplcHc8ZcytrB+52zoHkboQUkBwYJ2O4ZztCOBlgevMmhtWtZK4QNm/dz7ZVfhvk1KXx9tI6hxiYMOh3wPdPH1Tn6qFbrwC5Rj0GyBycndaBhy3Hckx2ZSPTgxJRGqNfvypkMjbKQuwvpbFiX7n8LBp+5v6w9amot2PBBvqX/z8AglOcbTFGv1IjV1vJfHWV7nNkmBhjvdPvO8+FY7zAXGmN1WPpGVImDebKmL/VqmHNOticsOZjHa01Qq9KQnQ4y5sT1Eku6tsRwk+N3TmGNwuHwYKqU0WHOkzhxmt9sH0I9bROOecrGEcrbnb3RUKvJxvfyb4h3OcF4ox8Bg1g8L1igU1KdKb fkLeD/X49BCi7He9K0UC3mCMYj3WskEvx8I12KG3FEKB7RgXdZUr8orVe+TrOzYjBYZkplnVU8++rCxfHVKFB/DHe/Si5HZgUGUyujMWQ/dwWA7q9dC5PxV8mPWUx5Bgbh7+fTrZBorESLtsc+EC2DTt8DA1WhZX/GR6Bfn2v0ql+AFmNu4CWqO4kPswCDKNyFZ4o3XMkt6Zif2/62lGw0gVOuUdJuYAEMjg1Fo9wEDrt48HpzB4p3WMBND6nnj/XmcJ8SNFh2HZ+IN2ytpUonGTDwOztSAIPmmE9fwroNG9ggDqd45R1J4r9omP85GCQSeMWCstW0GXvGI72LPPoNU9oXpkSTWdzyFNg0xZkt7cvSYsIBPkRIjP fb1b1YOaIBurPOSO4RGYWXM6nebCLrHgUp7Azv70l2PQZtNEwZc9gBz2fT0GtlzvQrqY7mG68WNqTRoOlcD//C02FNMGifDgaBF/vR2LAdM69JQCAzGAygqVFnlt9yw/rGdJo0qMXAnY/5+hPqTiQ/CgYeJ0bQODswSP7E6TEdaVx/LJc/Z/2897lxtMgEBhG8XjMIw5I6tBs4CYsuXegiBAM9NarXGMK+1yHpLbWUIK5M705j3YF8jwtiP15iXGM1KvZYhq2ouRX3lk2DTVA32sgHuQIeyJ0FnWjfwJyz8o 1SAu8u+iEwiPe6zUx9TUp3ms2bDK35fwIGCZ8Em9i2KsXbT+OF3Hh2OK+2jqJpOWN2fsy+QZMY/JxVHbQpajCeJ6Lnk9y5NKcnZerP40mU/Pve7xlKhyot2OOcngd2R6bQvJQBm+yyn4SdFGbN1q41Kdx0OLdF/eYpPtxb1p+StaZzR+7bI3E6OYGO6vXZaiv/jkinHwODlEgHDvWqx+/1+3I5A7TlDxj4cW+xEcXLdGbCOpFf2MjWLeuYML4rE2cd5K0MUKbEeXBrQReKtz2IeKQq3p9bi+tRvM1qXqeSgRQMKmot42V8PBFvd9BW9ze6LLQVD2VFeZ+ QB4NoH85PLUfJGoY0q6JC0ab78M6n+p43YCAUWEtjERT8RR2TEzjHy7uO74PBJE56S5yP1+H2aKo0Z9mbLyQmP2OZZgYwiHjFKsMytNxslT6DPOQC3So3ZdI FdySjTCIwGIJ6mfEccRXUG3Aco5INGHvaTfxMiuMGDHRasOqOP9HJ71mnW0kODD6dGynQrga1Wrajo+BMOonDdE6+//Kvzvz/52AQwJlemtSfcJB3GeZmhd8ZQq0/mzNJ0ImowLlsbEeZnpacdRV9oQ/7x27n7pXVmJivZ+9DkTWMx2qGDk0mrOVR0M+IBd8Dgy4M2+Ui/GXL7MZNMBxzDFfRJ0bfwqJdI/rOuyG092K50b8Rhv8EDK4Nx6BZLbr16UnLti0ZuuvFTwsFIskLMEjxP8fYTk2oZ3GZ7AYEsgaDSKzX9afOn00ZdyPdIya57mOAWjE0u2zDUToskRJ8jRlmTd AZdAr/7BKZ6MH5MXqULWSE5WPpqG90dmAQxN0FxrSt340Mcwx/DAwEGLoxvTEVCrRiyu1PmS7/OBgEcX9BSyqpNGX8tQxtxHArto1pRrmO23HJtikvwO0KQ1RVGjDqgpekZRvvxsVswWAIRlpN2Oko/SnKliNTW1LKcD222RrCKN5sMUZLpSYDT0hsi2iI4+7SrMHA+eR4OqrpsemD/Ft+DAzisTvUHR2Vqpjvc8q0n0L+gIE/D5a1ofCfOjQX+QVjA2qrFqHwwL3Ic24KkaJejyaV6HYxvbzGvNpEy/LtWPteOgyUCgaai3kkVpYAwCsaUOH3bhwKThA45BRTysuCgR/nJxWjuGpt9JvXp2KzCeyyz5/zh3INBlEup9kwuIoABUWp1Wm1hEQzyN+BwQkv6bjLl5esbqdJ7QG7sfZ5yLJqqnQVgYEUUKPerKbNXwVoOWAR67ZtY5sQtm6dRKfCBanV7SgO0cniTJGAwTg OuX4T/vLmsEEJ6vcQWsSRIVgvNER74AHeiCdHCqChIw8GkqGECRz1/Df7BzLLPwaDuJcsrV2JSWsek8kceZ2gpWZ3oaVsJx6bSrFdR9tW49l4P4iYwJNYzDjAHU87zpgOZdeJ98RG2mKp24gJax4R+HNywXfBYPh2W9GsGaymNKZxr UHsdwsn6OIYWnSawHorkYZCuNjnH4LBjVEY1S2PmnoFNAx7svHpZ37CEZg0yQsw8D9ngXnrpsy4k/08gex6DF4s7Unn6j3YJ9tTnuzB4XF6aDXtzUVpvgRfn8mAVnWwuJINFiT6C61rc/SrajNo45P0yWBxjhwYY0xNg7k8l53HluzNhRmdaNhkBNcz2La/BYPkz7zbN4g21TTpvfJe5nrIj4JBGLaHR9BBWw2zxTfJOM0s4s0OJrVWpfch92zK2DccT1jQSbB1XSyvkmaFk3y4vaQ32nrCt8kOb6V85sXmQTTQ7sIx6c3R 9keZbViObruds2kgxeB2cQbdq5fFePo53FI7LpICeLZ+ENV0B3BeNktSwrDZP4YGWu3Y/1H+TX8PBol435xHn9olMBx3HMf/r+WKaUMJm9KGErzPT6RZ9aL0OxqY3qOcEoP72THU+rUInSZvZavUV61d2I+Wv/yJwZQniGtHYlAaGDwUrzJIIc79MtMaq9N8+iUcnc4wpaKa3FDCySkV0RpxHA+vmyxorYmK8ULe58OStFyBQZjjcWlPQQ06jTqAUzb3/T0YpFNP2PP5NChSA7PdW5iloU7PFY8JEms8jg8b2lGsZkPaduiIcYcOdBCHznTR1+aXAm3ZLGhIVB59jovAwIKDLpL3ep4ypfYfrVh7bhd9KzZlzD5rwsUM8 SIbMPgPTD6MvM8s7VK0nHoV9ww9f0lWc9HTHcby+9JZtAkfWN9KnwmbX2N9bjDT9p/nQ0QCH7e0ps/a89je30FTg9msfuj/Uw4jiOT7YPBBbOyibRZgUlGH0cs3Mq1jZ7oO3CYdXgnkwj8FgysDaNaxG5aHrrBueGnU6ptzwPbnXTuSazCIc+fI4A6YGS3h7Xd23skaDGJ5v7kvBtXasPiF 7MNCC2pye5o0HcsdkXFM8ObsOFO6tZzNy6y2QRBaaFbbe1K/wl90WfwsQysvhIeLOtO+ZndOyA5BxL5jU39j1Ay34ZCh8H8XDBK/YHNwMM0r/47RnPvZ7j3wt2CQ/BX7YyNppVpAcCi3yBRTYgiP1gyhs85Qbn3N6vkInE+Pp62GCi3GXcvQ9RyJzYERdFRtyjYXWQPhycWZ3SlZYyFidSd95dWOMZio9eZylvNjBEd4aTqdq6jQa LgABXLXonE5PZEuFeqxVnbIIFlofS/tRbEqs3mQYebc98EgAZ/bCzDTVUGv73GcsjHS/2+TDxOCuG1ZjSKtZ/AibSmLF5en1+UXHX1MOqX6qQ4YdzSmbQNNCpcZwGVR70nSZx6ngUHaEhZcBajQ+bMhg/etZ2oFDQYfdJFfldD/EJ7Cd8fb7MRQ0Hm7uY+yhM7cSI5XJSSF2rPVVLIG/JdC5iw9e5krF85x9uxZzp6/yAf/2DR6/SdgQIorF8zrolK/CS3/LEHX1U/5InpR2GOmtClGjUUPM6/Z995L67J/0mrDO74K9wacGioGgwOpC2nDnzK/QVHa1GuCSs213PKTWo2k59n3GHgpVvsuWzBQ78jE81ktVfnErcGNUKnWmS1WEXK/7xtRGg0zS655xaRVNpv1BhhOW8j0bu3Ydu4hfiIYe7mY6lM3sXh6e7quOch9vwSF0sk/kb8Dgxipozk6tAGmVTT4Q2s6cy94SOEwIAdgIJl8OOteAsm+x5ja6E+qGyzhjo+ibiL7fflRMAi9Mo7mxsZMeyHvReM+bKF709Z0WPqOmO88H35rGq1Fqxqe yPfYhVptpFu9StSdfpnU+fjJzscY0rAZtcdfFRvGeKe9DNBvQcvZrzPP0k4UWqgCtLSpqYrZ6qtZbEgTj/vJiZiU12Lo4fRlZ9GvNgst00Z0mvs601BQ3KvVdDNqQO8bGdb7Jwkt9AuT6Fi7HJ0XneJ7MxC+CwbJkbhen02XOqXpYHkEryxuSfS5xhyThugMvZ15s6bkaD xuL6J7veK0m7GfzNMSkwh8vI4BFUphut4+rTs+2fUMk5vp0Xj4HbGekgIfsMy8Aeq9LmfWW3Isvo/X0LuhYH8nbMuicZhMyJudjKj0F0ZL36Tni891LA1rUbfvlUw9IPhfYXpnTRrs9czgduIJtNrJ4Ga/0XzkOj58x0T//61KiMVfABU9tZIMOO4vaDSZKLuDmDcujeGBzHb528PZVCtWjoGXhUZCQghPl2cEA+Hnry/Z1q4aKnWaYFi8EgMygkG/fTiLq0cMNns7ULuELiO3O5KXe6zmEAyShdbVRgxVMmxuJBMGnfRPq8BZg0EM9ttNKfr7SA55ZGhJeZ7HRFvynrabbYgQlBBwuBMFVdSYLljmzA0OZ3Y1LYpK vUU8CYjG90RfihcczM60XS++8mCGtvh9JaZd51OqZUp6zKLyf6A/9TLSaQ74HO9HqYKN6DVvI3v37WNfarj6nk9R/97wQpZgYLMB3VJVaThgAVtl0nrxtQfhQklKcD7JtK5a1DGfxqrd0uvzhwutfyPmXXDkm4ztjv+wgdatKgo6GsC+R/4SqPO/QO/OxlQuUYzpx56mr1D4CSVLMHi1iEbFDeiz/m1aWfU6MZRa4r04ZnPJJzW/P3HKRIeGTSeSui2B/2lTdBs2YfxFSeUPOtON6g0bMS51lcI5M2o2ashY6c6HIc9W0L1oOWr13ovVF8UapvoR+S4YfPPi9e3j4vK1fHB9SlWuTJPxm4S/z3PfOli0x6nAsOY0MzBm8dsssCDCB+u7J8TPrxzehLKVKlB/7Abh73PcffVJ4rAS/bi2QtB5g8aMWS8qy9uY3bMtNfWnsstRZBEScNw/mNb6rZj1KqOJTCT02Q7Mygn5Wq4x03ee5MiB/dL6coTL9x0JSRGNMjxgxxBd9OqaMFN8bQ2TzJph2GMxt1KbZDGB2D06LX523YT2aFYqRrVhq4W/T3H9oY/YNn2zPshA0UZNJWoxYZsQ18HUuA5z4ZYtwTKt3OzBIIlvticZqSW8p6gOFltOybznEOdu2olBwP+mJaaNqzP41pdMNjrC8TzjdYTnC2syauMpjqY9f5Cz196 J63NKmC2npzeirm5Lxm0TXdvEvMEGtGw/kVOuyRJ4eLSCXo206HkpMFMcUe43mFVbiKNgRQavPS2OY780jlOXrPATFJLy7SOX5zejXrWGjNokuraVxSPb0qL1KI46Sq15wje8rS+L07dt8WCaqhWgWPd5 wt9HOXPZSdwYjPv0iKWNRH6hJH1XnOHYodS4DnDi3Et8YvIZDGK8uDqtFX+UW8BjGShJ+vqW7d1K82uzlbz57M+j+XVQKdKM3S6ZXxHnf5PpqgUp3P0kAdEB PFzQliIlZnNHbnvfJCKtt9OguOhbf6X/iU8SUI304Mio3/nTdDv2qd+a4sfVcTX5S8WAqU98Scijbu6c72Pge5c1A/rQvXt3cejWrVtaMOvZl/1WX9PGorLb4Mjv7gZGDNnHk+DMxsLj/DCG9OvOzhfh4j0K7I4NZmi/3Tz7nHU/5MeLYxjWayP3/CIIeLWDMYN3Cy3cyLSu79CX2xk52JxtjwPTnADJTlwYN5ylx98SkpB6n+jZLnRo1wZDQ8P0MOEI1iH5tft4DsHA9zazx/ejU4e2tJFJ68idD/FNRfOvT7EcY55+va0FR95kMSgV78ipKUMwHbOT+76pGgrm6bwx9OqymDN2oT/tMEJ2YJDkdoH5o5az7YZn+rip922Wje/O1D33+JQGQmG8Wj+D+QuP8lbKmmGvNjBj/kIOW0sM8rfXG5k5fz6H3kj/ttrELOHvg1apBjsBp92W9B6+ijOuP1+vwXfBwP8JO2ebictXW6PO4hUDndqL6s8QFu11FDzuR3b2aoq+0UKss9pXIPAl++b1kD7fSfx8Z/Hzg7DcZp3eUo905vyawbRvIynL7UYs5aCLFLKSnNk/VJ9mLafzMlPTKRb3G7uYYdKNrl06Y9RWpl4bdmbMokukTeYPecmxuR1oJ77Whq6TVnNX1h+GCo50RV/xs23ad8SkiykmRqK09mHS0hfiIT3/hweY21mwhaYmGeLqyLBZp3BK+BEwSMD/+VHmd+4qfk8Hufd0YPD003gmhnJvkSkNtAeSiQuE5wPfnGSh+PkumZ4fMPEQH1LNbrQb11d1pL30mzsNncEZj1Q7HcyjNT2pp25OJi4QHFiI7QWWdTKlW1eR zZSNoz29R+7iTWpnZZwf9zd0TMs74wETOeos86roTzzfO0Zqo4zoZNIVU+N2wt9d6D/msrhX4Zv7ddZ0FMVlirFcXO3oMXgLz8PyGQziP/P++DKGW5yXH8JIDMfh7GIGj9zOPXcf7m7ozfCxF/mY1TviPvNsZz+GDj+FfXQYDhdWMnz0aeziM3j0pEje7etOv0FDOGkvLeOxwTzbP4ThG+7iJzPBP9HnFov69aX3Xussjg/4fwWDfybKQ5RyL8pDlHInytMVcyc5P0QpmaAb8zCpok/PNXZE50vqEgl5uIpe2k0xWfSen+nYqtwcohRpc4gJ9erQZMwj8mdrjGSBxc4yq0lt6g2+Q+BPpFflIUq5EyUY/CSiBIPciRIMcic5B4MobPbPZ+6YVdwLyq/UxeJ0agXzhi9KmwPys0jOwSABnwe7WNJ3Mqfc8muadCIBLw+xvNc4jjj9XOOISjDInSjB4CcRJRjkTpRgkDvJ62OXlSKRvD52WSkSUYJB7uT/BQxSUlLQ1tYmNDRUqfEcSoMGDXj58qVSETkU0XbQe/fuVSoihzJjxgwmTZqkVEQey7FjxzA2NlYqIo/F1tYWPT09pSJyKNHR0VSrVo2gIEk3n8r58+fJ63DkyBEqVKjArl27yI/3/y8ETU1NFi5cqNRFDkP9+vUZPny4Uhc5DJ07dxavxVbqIm+DqBdG5MCUusjbsHz5clRVVZW6yGEQrQ5RVVXDw9OT6JgYVBo3bkxeB1Frt1ChQuLu8Px4//9C+OOPP9DV1VXqIoehePHiqKurK3WRw1C+fHnKlSun1EUeBxHwFytWTKmLPA41atSgSJEiSl3kMNSrV4/Spctga2dHQFBw/gwlxMXFyXVLKOWfi6jF++TJE6UiciiiJXCiHiul5EymTp3K+PHjlYrIYzl06JC4J0YpeStv376ldu3aSkXkUETzAkU+OzBQshYlX8AgPDxcPJHB29v7p1KOI omot+XevXtKReRQRJMPt27dqlREDkU0v2Ds2LFKReSxiOa9KCcf5r28ePFCOfkwFyICAuWqhJ9AlKsScifKVQm5E+WqhPwR5aqE/BHlqoTciXK54k8iSjDInSjBIHeiBIP8ESUY5I8owSB3ogSDn0SUYJA7UYJB7uRfAYOYQFxd3uHgl8O9DGODcf/4DjvfCIXdzjvPwSA+HF93a957hOXfMd8JEfh7WvPW7QuKeuqHEgxyJ0ow+Ekkd2CQxDc/R2ycvAmJ+TFzEfvZGTvvT3yN/ZlPSEiX3IBBQpgHTi4f8QtP+AfPeOLk6UFgpCId3p1z+TfAIPTuHHq2qs6Ao+45ev7ro8X0b12NnvtdFOoIdVnJazCIsTvE1PZlabPm7XdPscyNxLqex9K4F M0XvyBCQfWqBIPcSa7BINLXDpt373gnCu8/YBOc+aChrMEghZSoQOxsPgjPBZLxWJmU5AgC7O1wD4wgIZNvShbiFeJ785ZPX5MytQbiw7yF94rS5C52hFm7tnhCHe34IKTbRSaOhK8+ONha8eLZEx4/fpwePngTFvfvmZeswCDxmx+Otl4ERsRn+MZYPjvb4+rzBQkHhHHdQp3fdPuzy+brD8XnvLMxasNnc/HjT3ykooxkBQYp0Z/xcHnL65fPeCLN5yfPbfAOk4cn/7Nm1NU3ZMa1Hz/1PPBcb+r3N2f5i6j/hP7yAgziP3tj+0Sq52cvsfcKJtvSlRTEtammmLecwD1pkY377Ivd0/TnbT0DyfZYs6TP3J7bA/PGo7gl3VctIewT9qnPP32BjXtWJ7UmEOr1nmfi8vCEp+9d0o5kzyjRQR95Z+OM19fMX5H0LRBHmbg+fPTL0lH/GBjEEuySXkYfv3qHfXAWB3EJNtN6twU9q3blVIaimvDFg3cfHHH7Iv8xKfERBLm/xfqVzPuF8NLalsCsDrZIicL2+FR6qxlxWHoqckpcKK7Sb3385BnWDu5ZAkNMkAPPU/P/tQ3O2VFFuLeQVnucszhcT3Rgkfuz9LisbD+SxZFw+QMGyQlECnn+1vqltHyI0vCU1+99s4ewlFhC3V5j/c5e8EWZXkhCuJ/gpz5gax+SqfclSdCrn609Xl9iJfY9OZ4wP1vsPEOIlXVFMQF8sLbCMSA6zwA4x2Agctyf3pxlVlPZ45Z/4bd+m3noGUGSjKfKGgySxGevlyoseq4r62xD5JxbUvR9FlQuS+clDwmKzxB5lB1rOmhQ+i8Vuh12JFzOjqfgdWIg5YqI3luLuXc+ZWk8kr/dZFK5QuJ0N1p6n0DpTZ/ODke9REkqVKlOrVq10sPAXbwMVqzTFb/cGI92yb4sveeToVDZs62+KgbD92MrrnxRvFxvjmH/JVxy+7FuWZddTdEcOZdLrv9dMEi0Xk+nmqUpVr4KNaX5rF1RC5OJe7ESjFJqsQo4Z06D1m2Zdf3HN+IPOt+XhoN6sVIJBmKJDn7PFcs+tNeW6Lm6Rilqtu3L vncBRGXRiZXkeoRhLVthMPmR2PAnfHXi3qr+tK8meb6GZil0W5mx73048VnEl+R+irEGLWlmcQ/RoXsxIY7cWTmEjqnPa5VFt3lntr7yEx/rLjEdMQRbHWFil5po1BTdVwOtum3ouuEpPtEyJjc+DD/rE1iaqqPyV2P6XpD3wrFhH3m0aQSmVaVxVamAdiMD1j7x5lsG6/+3YJAQitvddYzpqEaNVFvUpi8TbmSG1OSgh6wwb45293OkldQkoYFlc5G1/aujUrg67Q65yr/e6xbLuqjwaymN9PcLoXWPEVz0ysLuf3nF5oEt0DQ+juhyQqQfb0WgoCV9VlsdLZ3qWF53IzTNXCbyze0uawY3pJKu5D6d2vVpMPMiH8Nlck/Q/2enm+wd2xCV39Sou+mDfH2NFhqSF2czQEMal64mmlXUmH7BhS8ZOClfwCDWn/tLW/FLgTJopuqqhuAnqndn5X3HTGkQOf5orztMrFGYYmqlmXQ/MqMTwv3YQLEPKvDXaI4Gxsn5sW/uRxlfqgJ99jpJADrKkxMTSlG+9x4cU3tyUwJ5tbobKpX0mHDOg/g86uDNMRjEf73OtMIlqKguKKZ2bWrX0qbSXyJnXIBfR5zCJyo9hdkdu/zxYB/K/VGCUiUK8Uvf/bh8k6nYAhgsVCuPydKMYJBC+N0ZqFabxLjRmpS1OIB9aLLcda+TQ6hcTHhvycI0mnYdj0zduSl4Hu5BlSolKf5LQQyW3iNAmie+p4ehUWoku2y/KNS4ZNZgMBHd0v1Yds83Axg4sL2hOm1GHMDmW87ic9nVnCqjLLni8Z/wa1mDwZuVGKiZMGy7TVqPVcjDSXSoUJQ2067gJi13Aed70ciwPbP/wQk9QRf603hwb1a9jv9P6C+3YOB+dR4bli/gofR44BiHfYytW5iKBuO5kcVxvq6Hh9JSAINJj76Kfwm12s7RPTO5I7031uUg4xsUQafDWl5EZ37e4+RYDJo3ZcxdSXvS595qNi+cym3pVipxbmeY2eIPyjY eyDkfiU2IdT7D1FZ61B94RHqsbjwegtNrUqYRXQ95Slpj8V95f0woI2olqaxenr+qtaDPeXkn/enpVrbNG8tV6c8J3tdZ1PZPStXuylF3eavyXTBIjsX18gI61NKj564PfL8kJRP8cAXmTavR9aw04sRInK8uoptWMSpqVKKEmh7tM4KB+yXmmpelzqxHP3AqZ QpfXm5mYDMNjI6JlUaYw1n2zuzDSeloT0rIW3b2LkEJ9cZsfC8hvsTgV+zoXR9Nw+U8l/YSiPKzjwDktZdYSZxeUgw+TzbTX+cPymuoUaqCFvW32MjF/s39BgdnmHEk9bjmcGeODCtFyYo1WPla3gLmDxj4cNOyIxWqruRFqksRwO3Fpg6UK6XGhJvh8j4j6TO2B8ZSRnM0FpOroTbznnxPSvxnnq81olCBEpQsU5oy4 68Slpyu628ex5hYphJ99zlLwcCLk5PKULHPXpzFP0TjJpTFOiV0aLrpFTF52KGdQzAQKtHX52zvMJdr7qmp8eV47+L8KtDPb6Z7hJZqejMgazCIxWn/QDTKjWP5hiHUrGLAjMvepLavkqIfsEijIqbLHsmDQUo4d6apUdPyFE73N9C88nC2vAmUmWiThOeJ4WiVHcviFX2oVnkQu9+FyE/EiXFkq3k1zNctZryaBmYLbqZ1F/qeGYFWmdHssQtTKMOcJRjcnESNsgNYfj8zGOxorEm7UQexlYJB/Fcv3H0C+BqbronEzx+xs37N69evefPWFjt7W95buxEoNKGc97Wk6ril3LD3w83+jXCPFW9dg/lZh8yz7jFYRRsNU0bstJUxuvZsMdakTsd53JU6oSzBIPoTbrYS3b1+/YZ3Hp/5JlPIgi70o/GIwWx49olPouEKQX/Wjn58ifs59Zf3cwx8uTxBnxo1erDLIaOPc+XoBEMMjKfx9Gt2zwdze1Yb9Kp1ZodDBoRP9uD09Pa0ajOBB9kezxLEvfkdqa1lxPp3YqOA9cb+dNJsx0Zbmds +Cw2Uzs3R7bIfD5ExDnnF9rHdMZl4lPu31mHWrh7dz/j9zbeG8GxVd+pUbsnSF/Lu/XtgkOh/hxXmrWk6+BZf/9YkB/NoYx9a1DPnYiqnhNtzYlYv2g/ewe1H+xjWXpvW+7MAg14VaLjQ6gfMfiiv9wyhZS0TTnlld1MUzkctaFq6BpNuiIxPMj63F9G3jC7T7sq0UmJcODOpLWVrL+G1iMpjvLi5vD8GPdZw7eU5Jht rUG/zh79JUCxel2agX6oKoy/K02V+gcGteZ2ppL0K2VNroj2PM/TPslRf8UpuaCwp5B17hlem+Yb7OJ2cS3W16VwJkcn/+EAereyBmtoUVq7vRRWtLqx5GS4dDhCBwXEmlVOl//50MDg1uRyqAw7hIdwV8lYofwUqozf+PF55PNM0V3MMUuLD8XdzxcXFBSfbGywz+osK1fSwOOks1z2YLRjs6496xWmcdrfj/KTqFGsxjRsBkgeTswODiDtMV9Vh7gVPvsXbs7leWdrMvY5vWjeOAAbHh6FVfgL77+9ndJ1yDNj5AdlOhdiHs9Cs3ps19y+yrFYVTOfdyAAGFhz8mF9Td3Im2 YPBENY+/5Lhbg/2N9Wi/cgD2EnrouPOJmi2Hc5+G0kLKibElgNTW9OkenWqC0Gz7K8UVClCWXULDr8Nx/FUO2r0EcHVDPoa1xfu0aJs9SFsfeybZ91V/5+SHRgYqndj9D4X2cLBwmbqmIzai4O0CGQEg/hQN94cH0KP1hLdVa+uTulmg1n/wD8NMIIuDUK/jxnjFi9lUp9mwj3aVBQq/oxjtkQn/Xz6yw8wODehKdVqmbPfWf5K3Ls9jOplRq+9ztk/nujAgRGN0G83Ka0XIs3e2h5mfJ+udNth/534g7g9rx3aVYzYIgKTlE9cmtGBFo0Hcy1ENjEuHLCoR7kGPdMcbmrxD76/BBPDuj8EBo9XmqCj2pJVb+SH5rIHgxT87i1nglD3Zlx0xcn6DW/eCOGtDa6+4ZlWHCR63WLFMGNaLH2V5dDp1zfbGNgmCzBwu8TsLoVR67uNR6L3v3mLjYs3X7Ma3vF/wpbRRjSa94TsB8iicDo2Cr0y1Zl+X9SV8w2b/SNoqdWavS6yL/vMy83dKK1en222yCk22uUUEzqoU/eHwGAKDUppMv5qiNyVfAMDSxMq667nnczPAY/n0/3PKoy58EkmX5L58mE3w8rVF8pXAt88zzNNszw9djukz6cTgcGyrqjpruSB/0u296pMqc5reC+9ISIrMJhSEY2hh7ByOIVlcw30mm/gZWze1/dcgEEKsU67MS0sM8fglyK0XnARtwj5ZmX2YNAP1fJTOOsTQdz7rTTU+hPzDTaEiQpI/MMswCCeL1enUbnqbM54RYuV/3atHmXbzOV6GhkIYHBsKJoCGBxysufqnHqU6b8Fq0BpliWFc2u6GlVnHsfp80u21lajk2U6GPidFYGBGXNO3uONtTXW4uBMwLeEf3Vmc9ZgMJma5TtjsfM6r 9PSKgpnmF2zEgZjD2MvBQOHnY1RbzNMAINIcWW9MaYm2oNXcc8vgaSkJNxPmKD9ZytmX/QkUdC/x8E21FIrTeVBe3n+KUm4x5ujHXXQ77uex0E/n2fLGgzW0L6qAV1nneC5VHc31xhQu1IrLM/5ps8xyAAGgTcmsnDbep4Ep77Ji0N9atKu7zIeSwk06MYYOugUo6zxYk44xgn6C+O2RStatxrDiZ9w3kZeg0GS/32mt1OjYpc5vJLrnAvjvqUZBjX7cCDDYoT4cH/cbSX5dG39UAybGjH1kk+GN4fzZFlfDLW7s8sl+/iTQ16wrGs1ShuO46Eo/vj3bB1qgmb7tbyTK94BQivRGMMGPTiTYVg/6O4iOv8AGCSHvWVjnxoUE+DxZoD8tezBIA6XU7PoVU6dDoPG0F0K8NXUhRZik8lccI+WcUIx2B+ZQseK+ix7k3WXVNjrLQzIAgwSA16wb1wq4ApBW0NwfHUY ccRRZo6A2CvidmkeXco1Zv6z78ybiXXn3KQWFKnRkWPiYUg/HiwfQNmak7klB3AROB4fR3v1emQYMSDK6QTjjX4ADBJ8uT2nLYWrtWafo/yl/AEDX+4s6Cg0nsaz30ooh2/f8v7VbdYLtrRVu9nIjTQmBWK1ZRjl6qznrcifxXhyZooG5XvsxjFVr2IwMKVilRW8io0i4MZMIX/LYHFcMik3yisjGHhzdlolyrcewRCjIpSrITyXTyOVuQCDZGLdTjO+fk2qVqmClmZlShZSocDvRWm75AH+MpN1vgsG5SZxykfk1BN5uaIGlYv2Yp9bJEkpT1m qmQEM4hzY21MV7bnXCEzFdvttNK7cnnm3/aStNREYDEG97HiOuIaR4LiFeuXbMueGn0S5XofoVa0q0067EZ74ng3VK8mBgf/5UVQpU4ryGtXQ0dUVH1ykq9uPHc+DiOXfk6zAIOzWNOqqlqaMahWZtIqCJuUL/0bDqadwTu0x2NUUrXYjOGArqtTe7G+tQR/Lq6RtUu28jobl9Rl2wF48w9Zzb3OqjJjDBZd0J+YmGl5oM5BtVoo1zPIjkiUYvN2EaZ1yFC+ngbZUdzrVKlPLbCaHXwQSHi8pw1kNJSRFBuDt7IC9vb0QbDg 3vTmqRoPY+FZiNMVzDAb1Yvnz9JHbkKuDaGbQismXfH86/eUpGKQEcm9We9R+b8HYi24ZPNgDLM1aU73XPtwyGqunW5jQSppPmk3oMnQ3z/0+IzsvkHDBbvQxoJrpDpyz7dkK5cXK7lT9tT4DjjlKgD/6HZuHmKButIEPci2AQO7MN6ZtfTMy+v/AHwKDb7zd0pcaBWphtvdDplUY3wMDtzPTaVlQC6MNVkQlJJAghOD3uxiqWQJtI8HBpL4sxp4jk40p33wJVtkYqdBswECSH8kkJyWK358Q6sipafUpqV2fydc/p4+Zx7lyaV4XyjSw5Gm2kxEScL80meYqGrRe8RSx6Uny4d7S/pSqNY3bcsM6kTidHI+xep1MYBD5Q2CQjO+9ubRRqUTjefcIyXA1vyYfPlxuyG+/l0FdZC90qlCpQjkqTT1PaAYHHetzHUsjNRptc0hLb8CVOWir9mSvi/TmVDDQXMxj0VhwvB+XJlSmYvlJ3IpNJsbvJJNlwSDGjwuT/uKPYuWoXKECpY3X8ig0fxppud/HQFSokpNJjHHj7OiqFBH1HPzemg2vvqZVgr8DgxNeEmOa7HmGsYKjNrC8jmfIE5YLRloMBtIXxTntxrz8n/RYcoUXNrbiM7dtrPczqmwJDCZdx1vcx50sAYMy4zjk+k0o2LZsqF0Ww0lX8IyLw3NfL6qYreeBeAboa1bryIOBZChhBNus/YmNjydeHIRWdfK/23+e/VBCP5bc9iA6La2i8IGtjTTEcwzsMoFBpNjoPJylR7mOo9l+671Yj5cWNKeOZm82Pw4UGwO33QIYjJ7PNff0gue6X59qbQey9fV/BAzEcww6M3TLGwECpLqLteHw0Gb8VcaEeTe9xa2y4AxgkBQVyO3VPTHQ0UJHR0ccNMv9yW/649jxQQYMhvRlzev0IanP14bQvI0ABhf/h8EgJRLPy5PoUrUUbSdeyOT8vz6cT6+2evQ75JqFqUkiMUGaTz6PWdVHlWI1TdnwJDJtjs23Z8sZ2K465nuds5k8HMOnOwvoXaMELYYfxTEVAmJs2Tm8k1C+ lyHX25/yiWtzO9KyUT8yDGP/ABjEEfRkNYPrFKNxv728z6Kj6Htg4HRsMt0rNGPxK5kHk7y5OLs5JXXbk7q9Q6zjUaZ3rozByjfZNl6+CwYZJMnzKvO6l6SWxU1SG/nxbhdZ2K08zRY9z2aSYjLhNkI69P+ghtFKnqROJ0j8xKNVA6hcYwzXgmXvD8f+iAWtNJqxM8Mckx8Bgwinc8xvXwTtVgu4G5L5en7OMahYbRlPRGUwOoDHa4 xRraqF5YNYubzzuzEbgxJlGbXfGhtbka+y4fnlxfT4sxzmm+wl+ZSYDgYPY6U6fLOVnurqmO18wyf3M0ytkHEooQKaA7bz8tlO+upqUHrsCQLyodcgx5MPk+ Mj+ZwBk8Iuj6eMeJlgUaYIpSDVJP49GKTO1UzE4/QIqpUxYPrFI8ytooHZcgEMxLU+CdcDPSlXsSwaVXXSDLIoVKtQjIKFBnDULVJsDLzFYCCaJyB57/sNDahS0pzdLy4wSygs5itT3/mSVVmCwWj22H9VKMOcPRgMZOWjjLPlndnVRDN7MEgJ4+rkltTVqkYt4b2iIzbr6E3h2Nv0FoLLbsmqhMsy3d4f94nAYNB/p8cgbfKhnXxLzmYj7TWq037ObUS2LPRSKhiIprTH82ple+o06ipeJio6OTQ+MQmbTZ2o2nkA661lwGBwH1a9TO92Db46WACD1kz5X+0xSI7G6+oUOmn9QSuL M3zM6LmTQ7g9qxu99S24Gfr3r/O/M5M2RUrTatxdSYsxOZQHC3vSp+lwroZkZbZi8b+3CHPdwjQedAg7uRm7Adyaa4xhvd6clz0ENs6G7UM7oWGwlncZlhp+HwziCX62lkF6v1Ov5y7eZTPpNHsw iOfjyal0q9yQOY9k5zuF8mJjb5prd+CoaBQlJYoP+yfQV6czR79zRt0/AYNk/9ssMiiCpsEBXFNt9elZDNA0ZL9blk8QbnuUafoFqGa4jEdypjMCh6NjMFJrzFYHuUh4sro/patNypTXfwcGkS4XsGyngmYzS24HZ41/+Tr5UGc1r1J/C3fi8LjyVOi1A+e0nu0AHixtScHiFaimLeurqqJRpiQlNWbxSFQekoN5nAoGqRvPJYbxapMZ6qpdWXxxN1MqajDogPzkw8oDj+CdEEPgtRloqZZi9FEv8npR dA7BIIEIh0P0776Ga+9dxKcmen18wHrTUhQU9RgUM2OfTUQaxf84GIiU/4K19TUp0qUbPUqWxXz1U0JEOotzYHOvClSeJJobEE1MdDTRohATQ8SzZVQvXZyeBz8SKZSTTyclYHDAWbr1hd85xlYrSV/T7hRTteS4k9SxJT3PBgyEZ10Ua/15TlclyIPBSA7YRwvf/YS5dTozZv5JHqZtTmWPy6f0PPtfAQND9a6M3iM/yS3x6VJaquthuvyxuMX0JRUMxIOkH9nSRpXmPVZjlaqalFCeLGqFWvsMQwlKMJCp70Ir6t58eumVotGwdbzJYvOcZPeTjGppgOH4u8j7ikSiQ8IJD5Fvcnuc taBhlWr02O0kBtpk73NMFPTbYsTNTF3LpCQQ/HwdgxuWpE6fBTzNtCtODPa7R9CpcmPmPYiWSdMZJuq3oNnQG2RcVRn+ZDmmbetjfiljbIl8ebOTsc2LU6P7VO59yV4t31uVEGq9nYENK1Fv1q30VnrUB/YMMaaS4SreJImWBz5lTa9WVDc5gc931B/zYSeD2+lgeNRXLp0xkd/4Ei4/eyr42Qq61SxLs4XPxPGmhL1h++BWVDE8QGYuSCby42UsjYtS1bAvZzPBSRL+j9cwqKwaQ475pM/TCrNiR/8WaLU+QMYppkme55jcUYP6OzJeSSHa+x7Lu/1JlRbdOPox++/N31UJK3me1pEahfuJEZRX1WLOvWhxGuO8rzLVqDw1Vz4nIjpG4qeiRT7rC87HR1CmlAYzRWMHCSE8WZ4BDER55XuJadqVKGLald6lVBl00EUeDPrtw0V0e0I gV2ZqoFbRmHWPQ/N0C+wcgkEysR9PMEKnomToQCYULqOJ7sI7yG5alR0YOOwyp0wxC456Rsi/+/laalSQvK/dBmvxpiBRtyZQvngphp/2ytxdlvSa5dWLU7jrLmzD4vE/OYhyRUeyJxUAhNbAxRGVxWktOPw07qnRJT1lmXop2s68io8UDHxODqZi0e7Mv/gSJxcX8YoLcfD5QlTivzeckBUYhFyzQOuvXiy+m3GDIzu21KmA/pC9SBchYL+tHhX1B7Hng6iq+3HcuBZVy6tSRbcGNWqIgjZqzS3Y+dybaOFlH3c2pNKQmVyQ2fnQZVdjVFv2YdOrUH42yRIMrJajX0kf07kXsEnL66fsMGuOm v40DjvFiB2O/5lu6DVvxbSrov6Dr9wfb4Rajd7Mv2IjfubZ0bF01f6Vgg1HsfWdBAQCz/akTl8zlj1PB4OgS31p0KIp48/7/HT6yx0YCHXa7jjD66rwR72e7HnuxEdXVz6K9e2KT6AESD1PjqRl69aMu5OxfH3h1frtLO21lQep+fT+Igt616KM4SiOiycTpOB9bgKGrZoz/EZIpvjjXC4xufkv/K7bgc2PnHCRid/b/6vYpsQ4H2dWqxLUajeP886SsnB4SgeaNO7P7g/SepAYQ2iAhyTf942hWV1NWq1/JPztgU9ApNg4J3jextLwdwpqtmD1XUe5uLz8QpHdZfy7+xjEeXFpYXsq6LVm3X3R8/bc2zqWJpUNGHDBV7R3LCFP19BLX5fOx7MoU0lxhAd5itP6+tRsjOuVp87iW8LfbkI6vgnOJog3F7cycvQe3qTq9c0N1vSvKTj5Xpxwk+g17M12BrfSwiBTd0 EKicHWbO9Zjl/KaDP7ooPMt37E3euzeHVaYtArdvQtRxU9wf68EV17z82Ng9HXNWTBvdC0Xf0iP3uL0/Du+mp6NSqJ5qwLYp15eH8Vzx9LCnPg0GB1fimhypRTDjjLxuUZRGRifoOBN9dntaOU2lKeynjhuIAHLGpbgnI9D+MRHYbtjq4UKVWdFVaZp6vHep1iWKm/qDjlPpGxQTxe0pGSFeZxX26r+ig+XZpJ6UKCDyxYlL5HPSVOP9KT4+OKUdp8Fw5SJ5gU/pqtJhUoW2oMh70jSP63NzgSEXiE/SGGVdeiYoUKVKhQEdUquiy48YkMAJoNGMThdnICjest5FLGQ1IEaHiyqh61dVWZcSVIvHGD9cZm1KsxhfOeUVmMHcbzen0L6teawUXPcLxvzqJFHUtOu6VuO JGC36WJNKqlgcVpN76lviBJKNStGzFozQP8pd1AQTdm0bJOFbSE9FarVi099NnO86B/b/phlpMPHy6kTd2JbH3mnwEMPnKkS3P6zjqDs1S1rsdMadF3BqedokiODeT0qAZM3XoJh5BIIiNFQbSuuznqjUay1zYGnwu90J+1hjue6W/2ONkD/T6TOfQh/L8BBnb7Gd6xBhpasnldFU2zhRy3j0xr3QTfGItJr36sfBAkLbofODDGlNpVJM9VHbiedasG0X/OVHa9l7Q2Q25OoMuUcWx/m976DLk3hW69e7L4tv9Pp7/cgUEktntm0Fm1EqoaVdDW0UE7Td8N6Wd5g2ChjX/BogX6rS3IxAVC/U3yus+a4U2pkvpc1SoYDJ7DnYBEaT75cG6SIfrNhpOJC4jB+dRizETxq2sJ8evKxF8PswnHcEiSAESE/TEWmmmgJS0LtTsPZ+/b2PSW7mdr9k03kOR7FU001NWl5ceAflMeiHdp9Lmymj5CXJXVNakmF5ceJsMFWE/4QTAQfXnIOw5Ob4VmFck7qjTpwpCz7tIt3EN4uq4XLXU6cSwr1gx35vwiY2latcRpVRentRldh13mk2itvONZLNtqUjVNr40x7nMMp7gEqe0M483OwbTUMmR fpu6CJIKs9jNaTfhWNQ3hW6ujo536rTVo3XW1tGcmhQT/F+wZpY5mVYledZsbs/B2cHorN8qbe+vNpGnQQlNDTZrWBrQ1O4FogUO440kmqVemkqoGVeXiqk5z4yXcD8lnMIj7xKO1g2nUajvWsn48PkicD3X0Lbnk5Mb5abWo32J9eo+ibH4Krf 7zk2pQX3jH28hgXm0fQaPmG3kRm6G9H+3H+amV0dGrx5rnUr8T5ceVRfVoPOEkbnFpToxvb7Zhriv8vvZ5lruI/v+CgbTCJsbGEisTskpXdocopSTFC88kyG2fnCbJccTFxpAgrZFJ8THCvYnZLhlMEd0fHUeigEwpSQnCs6L3yrw4OVH4LVa4LhcJiXGxxAs/pqSlSfRsNFGREUREyATRu1MUq8cgJVnynYmZMFHIF9HYd0JSmr5ShNZDnHgSJeKdI2uX7cS8m/Jjo2HnRqJZuheLbvmQIORNXEKiXN6kviMx+efbyCDLQ5SEMhEfF0N0VKRcXkfGJWYqp3Hx8UJZTP/ulIRYolKfEcplkvCuhMT4tPIlfiYhXq68icuW6D1JP5/+cgcGgmOPjyM2OoaY6CgiI+TrVnRsPNH2BxlWX592E++RdX+UUFfjo2WeiyQmPjHtWqzTUcY2aUnr0bf4nEX8yUJeSOKPzhR/VEy8nN1KiktPY5SQtmT5wkB8jLS8REYRLeoqjpSkJzomUTKkkSiNKyaLuKLl4/qRsxJSEmPT3xMdmzYfJsH3Nss6Nae26Um8szaKJMRGyac1SpLWqGjp8mvhexJiZct/FDFpTkdw6IFP2GDWHN32h8hqdoK4TEu/NSrDt0ZGxSHbyZqSkK7XSOE7EjOkNTEuKi1vo0TvlNbLyChJHojtXZQorphM9jkyKlYurvw5RClFkrdxmf2QSA+xsaL6LvqOGOLikrPdOTdZyM/YGIl/yu59koIo8amJMrshJgl2JzY+4/k/Qj6JfFZcYp7t1qs8XfEnkbw8dvnb46UYVCuKwczjvHL1EueLl9Ai29S2AWpd13DH97+xja+sKI9dzp3k7+mKMbzfMpq++kPZ55AT0xaNze4J9G8+gF22P9fW nDk/XTEej2vLGFmvI8uf5dd8qET8HmzAok5bFjz4xs8kytMVcydKMPhJJC/BQNSaDb67kI7NtcVDJlXFQZN2s0/wPjhBYY+ozY0owSB3kr9gIOp5FE3Ois3hBCpRD5nwfFQsP9vWWzkHA1EvTCwxkdGZTuXLS0lOkMTxs23JpQSD3Mn/CxiIun5EY0GpkSjln4toSeGjR4/y9J2i4ZmoqChpiOa/10+QLiYmJuzYsUNZkHIoU6ZMYdy4cUpF5LEcPHgQIyMjpSLyWETbR4tOP1RKziQ0NFTsswMDJWtxVL58+UJeBw8PDzQ1NXn//j358f7/hSAq5OfPn8+7d4Z+5ds3+XG6b1/DCP2P6q99+/asXLlSWZZyGEaNGsWQIUOUusjjsGHDBlq3bq3URR6HGzduiHfIVOoiZ8HR0REtrSp8+vRJvIGhyh9//EFehyJFivDLL7+I/82P9/8vhAIFClCoUCGlLnIYChYsyO+//67URQ7Dr7/+Kg5KXeRtEJVJUdlU6iJvQ+HChcU2U6mLnPvsEiVK8lZozPv4feL/AI2csUzDU//JAAAAAElFTkSuQmCC[/IMG]at of the example:
(Sorry, I can't get this to line up properly and could not insert an image from my PC.)

1 (A) Name (B) Highest (C) Driver (D) 3/20/12 (E) 3/25/12 (F) RANK?
2 (A) Name (B) Low (C) Milk (D) 3/19/12 (E) 3/18/12 (F) RANK?
3 (A) Name (B) High (C) Blah (D) 3/20/12 (E) 6/03/12 (F) RANK?

In Column A, we have the the Item Name, which we are providing the automatic, continually updated ranking / priority to.

In column B, we have the words, "Highest, High, Medium, Low" which we could just convert to numbers 1-4 rather than assign them values, if that's easier.

In column C, we have the same situation (but different words) but 1-5 instead of 1-4.

Columns B and C are the "meat and potatoes." They provide the rank of importance of the Item in Column A.

We are then taking this rank and prioritizing it by the Date.

Column E represents the Date the Item was entered into the system and Column F represents the Due Date.

So now we want to assign a rank / priority to B/C according to it's proximity to the Due Date. If the Due Date is in the past (overdue) then that would boost the rank / priority.

I hope this is a better explanation and is helpful to you. I appreciate and am grateful for your assistance.

Glenn

4. ## Re: Complex (to me) sorting / ranking problem

Ok understood now.
No the words are fine, the formula can look for the equivalent integer.

How should the two (Column B and Column C) ranks add up? will it be an "average"? or is one more important than the other? To what ratio?

Then for the "boost" if the due date is overdue, will it be a boost equivalent to the number of days? "3 days due so +3"? or would it be a coefficient? "add 10% per day".

Sorry for this, just trying to understand fully the concept, also this will help other find the most appropriate answer.

5. ## Re: Complex (to me) sorting / ranking problem

Originally Posted by cyrilbrd
Ok understood now.
No the words are fine, the formula can look for the equivalent integer.

How should the two (Column B and Column C) ranks add up? will it be an "average"? or is one more important than the other? To what ratio?

Then for the "boost" if the due date is overdue, will it be a boost equivalent to the number of days? "3 days due so +3"? or would it be a coefficient? "add 10% per day".

Sorry for this, just trying to understand fully the concept, also this will help other find the most appropriate answer.
Don't apologize because I'm not providing enough information. These are excellent questions.

For the two columns B/C, I don't have the specific answer, but a 1-1, 2-1, 3-1 should all rank higher than 2-4 on down. Hope this make sense.

For the date boost, if the Due Date is in the past, it should automatically rank above anything with a date in the future and ranked in order of # days past DD. This will trigger either removal of item or change of due date.

THANK YOU!

Glenn

6. ## Re: Complex (to me) sorting / ranking problem

Ok understood
For the date boost, if the Due Date is in the past, it should automatically rank above anything with a date in the future and ranked in order of # days past DD. This will trigger either removal of item or change of due date.
I would as well suggest for a conditional formatting to highlight in a different color all rows with past "due date".

How long usually will it take for you to either remove the item or adjust the date? Mean to say I am considering what ratio to use for the boost. 1 day delay will be less than 2 days delayed and so on, so my question is how many could it be "delayed" maximum?

7. ## Re: Complex (to me) sorting / ranking problem

Hi Glenn,
Would it look like this?
HTML Code:
```	Rank 1	Rank 2	Entry Date	Due Date	hide	hide	hide	hide	Final Rank
Name	Highest	name3	3/20/12      	4/13/12	1	3	96101000	3	2
Name	Low	name1	3/19/12      	4/14/12	4	1	95100100	4	4
Name	High	name1	3/20/12      	6/3/12	2	1	97110000	1	1
Name	Highest	name2	3/19/12      	4/10/12	1	2	97110000	1	URGENT
Name	low	name2	3/19/12      	4/15/12	4	2	94010100	5	5
Name	medium	name3	3/19/12      	4/16/12	3	3	94002000	6	6
nodata	nodata	nodata	nodata	nodata
nodata	nodata	nodata	nodata	nodata
nodata	nodata	nodata	nodata	nodata```
Please let me know.
You can as well have a go at the linked file for you to see if it fits your needs.
I'll wait for your feedback for further modifications.

Link to your file.

8. ## Re: Complex (to me) sorting / ranking problem

Again, thanks for your assistance. You've definitely done it. We just need to tweak it a little.

It would seem this is configured properly although I'm trying to understand why Row 4 with 1/2 and due date out in June is returning a Rank of 1, above Row 2 with a 1/3 and DD of 4/13. Seems it should be the opposite. Also, there's no Final Rank of 2. 1, Urgent, 3-6.

9. ## Re: Complex (to me) sorting / ranking problem

Yes, That is why I wanted to suggest for the following:
HTML Code:
```	Rank 1	Rank 2	Entry Date	Due Date	hide	hide	hide	hide	Final Rank
Name	Highest	name3	3/20/12      	4/16/12	1	3	96101000	4	4
Name	Highest	name3	3/19/12      	4/14/12	1	3	96100998	1	URGENT
Name	Highest	name3	3/20/12      	6/3/12	1	3	96101048	6	6
Name	Highest	name3	3/19/12      	4/19/12	1	3	96101003	5	5
Name	Highest	name3	3/19/12      	4/15/12	1	3	96100999	3	2
Name	Highest	name3	3/19/12      	4/14/12	1	3	96100998	1	URGENT
nodata	nodata	nodata	nodata	nodata
nodata	nodata	nodata	nodata	nodata
nodata	nodata	nodata	nodata	nodata```
In this proposal, the past due dates are flagged as "URGENT", then the closer dates are ranked in order of priority "1" being urgent and "6" being set in the future. I intentionally here gave the same ranking for all names for you to see how the ranking will vary with the due date.

Is this more like what you are looking for?

link to the new proposal.

10. ## Re: Complex (to me) sorting / ranking problem

This looks correct to me.

Page 1 of 4 123 ... Last

#### Posting Permissions

• You may not post new threads
• You may not post replies
• You may not post attachments
• You may not edit your posts
•