JenniferMurphy
Well-known Member
- Joined
- Jul 23, 2011
- Messages
- 2,676
- Office Version
- 365
- Platform
- Windows
This is not an Excel question per se, but there are a lot of people here with math skills and I get such good answers here, I thought I would give it a try. I hope that's OK.
I have some performance scores or ratings. They are the results of tests in various categories or components of a skill. I would like to convert them to inverse relative ratings where the lowest score gets the value "1" and all the rest get proportionately lower scores. This is in preparation for converting them to relative weights for future drills.
If all of the ratings are positive, this is easy. I just divide the minimum value by each of the scores. Here's an example:
[TABLE="width: 600"]
<tbody>[TR]
[TD="align: center"]C/R[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"]E[/TD]
[TD="align: center"]F[/TD]
[TD="align: center"]G[/TD]
[TD="align: center"]H[/TD]
[TD="align: center"]I[/TD]
[TD="align: center"]J[/TD]
[/TR]
[TR]
[TD="align: center"]4[/TD]
[TD="align: right"]Components[/TD]
[TD="align: center"]A[/TD]
[TD="align: center"]B[/TD]
[TD="align: center"]C[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[/TR]
[TR]
[TD="align: center"]5[/TD]
[TD="align: right"]Scores[/TD]
[TD="align: center"]12
[/TD]
[TD="align: center"]6[/TD]
[TD="align: center"]3[/TD]
[TD="align: center"]2[/TD]
[TD="align: center"]2[/TD]
[TD]Min[/TD]
[/TR]
[TR]
[TD="align: center"]6[/TD]
[TD="align: right"]Inverse = MinScore / Score[/TD]
[TD="align: center"]0.167[/TD]
[TD="align: center"]0.333[/TD]
[TD="align: center"]0.667[/TD]
[TD="align: center"]1.000[/TD]
[TD="align: center"]2.167[/TD]
[TD]Sum[/TD]
[/TR]
[TR]
[TD="align: center"]7[/TD]
[TD="align: right"]Weights = Inverse / SumInverse[/TD]
[TD="align: center"]8%[/TD]
[TD="align: center"]15%[/TD]
[TD="align: center"]31%[/TD]
[TD="align: center"]46%[/TD]
[TD="align: center"]100%[/TD]
[TD]Sum[/TD]
[/TR]
</tbody>[/TABLE]
The four components are A, B, C, & D. Their scores are 12, 6, 3, & 2 (Row 5). The relative inverse ratings are in Row 6. The lowest raw score (2) gets a "1" (H6). The rest get proportionately lower ratings.
The weights are in Row 7. The component with the lowest score will get the most drills (46%). The rest will get proportionately fewer.
This is all fine and good until one of the components gets a zero score. Then we run into divide by zero errors (H6), which causes the rest of the table to fail.
[TABLE="width: 650"]
<tbody>[TR]
[TD="align: center"]C/R[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"]E[/TD]
[TD="align: center"]F[/TD]
[TD="align: center"]G[/TD]
[TD="align: center"]H[/TD]
[TD="align: center"]I[/TD]
[TD="align: center"]J[/TD]
[/TR]
[TR]
[TD="align: center"]4[/TD]
[TD="align: right"]Components[/TD]
[TD="align: center"]A[/TD]
[TD="align: center"]B[/TD]
[TD="align: center"]C[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[/TR]
[TR]
[TD="align: center"]5[/TD]
[TD="align: right"]Scores[/TD]
[TD="align: center"]12[/TD]
[TD="align: center"]6[/TD]
[TD="align: center"]3[/TD]
[TD="align: center"]0[/TD]
[TD="align: center"]0[/TD]
[TD]Min[/TD]
[/TR]
[TR]
[TD="align: center"]6[/TD]
[TD="align: right"]Inverse = MinScore / Score[/TD]
[TD="align: center"]0.000[/TD]
[TD="align: center"]0.000[/TD]
[TD="align: center"]0.000[/TD]
[TD="align: center"]#DIV/0![/TD]
[TD="align: center"]#DIV/0![/TD]
[TD]Sum[/TD]
[/TR]
[TR]
[TD="align: center"]7[/TD]
[TD="align: right"]Weights = Inverse / SumInverse[/TD]
[TD="align: center"]#DIV/0![/TD]
[TD="align: center"]#DIV/0![/TD]
[TD="align: center"]#DIV/0![/TD]
[TD="align: center"]#DIV/0![/TD]
[TD="align: center"]#DIV/0![/TD]
[TD]Sum[/TD]
[/TR]
</tbody>[/TABLE]
It also fails in tests where there is a penalty for errors making a negative score possible.
[TABLE="width: 650"]
<tbody>[TR]
[TD="align: center"]C/R[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"]E[/TD]
[TD="align: center"]F[/TD]
[TD="align: center"]G[/TD]
[TD="align: center"]H[/TD]
[TD="align: center"]I[/TD]
[TD="align: center"]J[/TD]
[/TR]
[TR]
[TD="align: center"]4[/TD]
[TD="align: right"]Components[/TD]
[TD="align: center"]A[/TD]
[TD="align: center"]B[/TD]
[TD="align: center"]C[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[/TR]
[TR]
[TD="align: center"]5[/TD]
[TD="align: right"]Scores[/TD]
[TD="align: center"]12[/TD]
[TD="align: center"]6[/TD]
[TD="align: center"]3[/TD]
[TD="align: center"]-1[/TD]
[TD="align: center"]-1[/TD]
[TD]Min[/TD]
[/TR]
[TR]
[TD="align: center"]6[/TD]
[TD="align: right"]Inverse = MinScore / Score[/TD]
[TD="align: center"]-0.083[/TD]
[TD="align: center"]-0.167[/TD]
[TD="align: center"]-0.333[/TD]
[TD="align: center"]1.000[/TD]
[TD="align: center"]0.417[/TD]
[TD]Sum[/TD]
[/TR]
[TR]
[TD="align: center"]7[/TD]
[TD="align: right"]Weights = Inverse / SumInverse[/TD]
[TD="align: center"]-20%[/TD]
[TD="align: center"]-40%[/TD]
[TD="align: center"]-80%[/TD]
[TD="align: center"]240%[/TD]
[TD="align: center"]100%[/TD]
[TD]Sum[/TD]
[/TR]
</tbody>[/TABLE]
I would appreciate any suggestions for ways to calculate reasonably good inverse relative ratings in these cases. I realize that compared to zero, all non-zero values have an undefined (infinite) ratio. I suppose I could add 1 to all scores for an approximation. Similarly, for the negative numbers, I could add a value that will bring the lowest score to 1.
Are there better ways?
I have some performance scores or ratings. They are the results of tests in various categories or components of a skill. I would like to convert them to inverse relative ratings where the lowest score gets the value "1" and all the rest get proportionately lower scores. This is in preparation for converting them to relative weights for future drills.
If all of the ratings are positive, this is easy. I just divide the minimum value by each of the scores. Here's an example:
[TABLE="width: 600"]
<tbody>[TR]
[TD="align: center"]C/R[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"]E[/TD]
[TD="align: center"]F[/TD]
[TD="align: center"]G[/TD]
[TD="align: center"]H[/TD]
[TD="align: center"]I[/TD]
[TD="align: center"]J[/TD]
[/TR]
[TR]
[TD="align: center"]4[/TD]
[TD="align: right"]Components[/TD]
[TD="align: center"]A[/TD]
[TD="align: center"]B[/TD]
[TD="align: center"]C[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[/TR]
[TR]
[TD="align: center"]5[/TD]
[TD="align: right"]Scores[/TD]
[TD="align: center"]12
[/TD]
[TD="align: center"]6[/TD]
[TD="align: center"]3[/TD]
[TD="align: center"]2[/TD]
[TD="align: center"]2[/TD]
[TD]Min[/TD]
[/TR]
[TR]
[TD="align: center"]6[/TD]
[TD="align: right"]Inverse = MinScore / Score[/TD]
[TD="align: center"]0.167[/TD]
[TD="align: center"]0.333[/TD]
[TD="align: center"]0.667[/TD]
[TD="align: center"]1.000[/TD]
[TD="align: center"]2.167[/TD]
[TD]Sum[/TD]
[/TR]
[TR]
[TD="align: center"]7[/TD]
[TD="align: right"]Weights = Inverse / SumInverse[/TD]
[TD="align: center"]8%[/TD]
[TD="align: center"]15%[/TD]
[TD="align: center"]31%[/TD]
[TD="align: center"]46%[/TD]
[TD="align: center"]100%[/TD]
[TD]Sum[/TD]
[/TR]
</tbody>[/TABLE]
The four components are A, B, C, & D. Their scores are 12, 6, 3, & 2 (Row 5). The relative inverse ratings are in Row 6. The lowest raw score (2) gets a "1" (H6). The rest get proportionately lower ratings.
The weights are in Row 7. The component with the lowest score will get the most drills (46%). The rest will get proportionately fewer.
This is all fine and good until one of the components gets a zero score. Then we run into divide by zero errors (H6), which causes the rest of the table to fail.
[TABLE="width: 650"]
<tbody>[TR]
[TD="align: center"]C/R[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"]E[/TD]
[TD="align: center"]F[/TD]
[TD="align: center"]G[/TD]
[TD="align: center"]H[/TD]
[TD="align: center"]I[/TD]
[TD="align: center"]J[/TD]
[/TR]
[TR]
[TD="align: center"]4[/TD]
[TD="align: right"]Components[/TD]
[TD="align: center"]A[/TD]
[TD="align: center"]B[/TD]
[TD="align: center"]C[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[/TR]
[TR]
[TD="align: center"]5[/TD]
[TD="align: right"]Scores[/TD]
[TD="align: center"]12[/TD]
[TD="align: center"]6[/TD]
[TD="align: center"]3[/TD]
[TD="align: center"]0[/TD]
[TD="align: center"]0[/TD]
[TD]Min[/TD]
[/TR]
[TR]
[TD="align: center"]6[/TD]
[TD="align: right"]Inverse = MinScore / Score[/TD]
[TD="align: center"]0.000[/TD]
[TD="align: center"]0.000[/TD]
[TD="align: center"]0.000[/TD]
[TD="align: center"]#DIV/0![/TD]
[TD="align: center"]#DIV/0![/TD]
[TD]Sum[/TD]
[/TR]
[TR]
[TD="align: center"]7[/TD]
[TD="align: right"]Weights = Inverse / SumInverse[/TD]
[TD="align: center"]#DIV/0![/TD]
[TD="align: center"]#DIV/0![/TD]
[TD="align: center"]#DIV/0![/TD]
[TD="align: center"]#DIV/0![/TD]
[TD="align: center"]#DIV/0![/TD]
[TD]Sum[/TD]
[/TR]
</tbody>[/TABLE]
It also fails in tests where there is a penalty for errors making a negative score possible.
[TABLE="width: 650"]
<tbody>[TR]
[TD="align: center"]C/R[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"]E[/TD]
[TD="align: center"]F[/TD]
[TD="align: center"]G[/TD]
[TD="align: center"]H[/TD]
[TD="align: center"]I[/TD]
[TD="align: center"]J[/TD]
[/TR]
[TR]
[TD="align: center"]4[/TD]
[TD="align: right"]Components[/TD]
[TD="align: center"]A[/TD]
[TD="align: center"]B[/TD]
[TD="align: center"]C[/TD]
[TD="align: center"]D[/TD]
[TD="align: center"][/TD]
[TD="align: center"][/TD]
[/TR]
[TR]
[TD="align: center"]5[/TD]
[TD="align: right"]Scores[/TD]
[TD="align: center"]12[/TD]
[TD="align: center"]6[/TD]
[TD="align: center"]3[/TD]
[TD="align: center"]-1[/TD]
[TD="align: center"]-1[/TD]
[TD]Min[/TD]
[/TR]
[TR]
[TD="align: center"]6[/TD]
[TD="align: right"]Inverse = MinScore / Score[/TD]
[TD="align: center"]-0.083[/TD]
[TD="align: center"]-0.167[/TD]
[TD="align: center"]-0.333[/TD]
[TD="align: center"]1.000[/TD]
[TD="align: center"]0.417[/TD]
[TD]Sum[/TD]
[/TR]
[TR]
[TD="align: center"]7[/TD]
[TD="align: right"]Weights = Inverse / SumInverse[/TD]
[TD="align: center"]-20%[/TD]
[TD="align: center"]-40%[/TD]
[TD="align: center"]-80%[/TD]
[TD="align: center"]240%[/TD]
[TD="align: center"]100%[/TD]
[TD]Sum[/TD]
[/TR]
</tbody>[/TABLE]
I would appreciate any suggestions for ways to calculate reasonably good inverse relative ratings in these cases. I realize that compared to zero, all non-zero values have an undefined (infinite) ratio. I suppose I could add 1 to all scores for an approximation. Similarly, for the negative numbers, I could add a value that will bring the lowest score to 1.
Are there better ways?